基于MATLAB语音信号采集与分析的毕业论文设计.doc
《基于MATLAB语音信号采集与分析的毕业论文设计.doc》由会员分享,可在线阅读,更多相关《基于MATLAB语音信号采集与分析的毕业论文设计.doc(31页珍藏版)》请在三一办公上搜索。
1、河南农业大学本科生毕业论文(设计)任务书 论文(设计)题目 语音信号的采集与分析 学 院 理学院 专 业 电子信息科学与技术 班 级 05电科(2)班 学 号 0508101053 姓 名 123 2009年 月 日论文(设计)选题的来源、目的与意义:通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。论文(设计)的主要内容:本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析
2、方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。进度计划(进度时间、主要工作内容):2.203.01熟悉选题,查找阅读相关资料。3.024.10根据选题的要求提取各种用信息加以综合利用,完成论文总体框架4.114.25精心修改论文,在老师的指导下调试程序,完成论文总体设计。4.235.10在指导老师的帮助下进行最后一次精心修改,完成了终稿。主要参考文献:1胡航语音信号处理【M】哈尔滨:哈尔滨工业大学出版社,20022丁玉美高西全数字信号处理【M】西安电子科技大学出版社,20063樊昌信通信原理【M】北京:国防工业出版社,2005
3、4张威MATLAB基础与编程入门【M】西安电子科技大学出版社,20065何强,何英MATLAB扩展编程【M】北京:清华大学出版社,2002:293-296论文(设计)工作起讫日期: 2009年 02月 20日至2009年 05月 10日指导教师(签名)院长(签名)语音信号的采集与分析作者:123 指导老师:456摘 要 语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。本文简要介绍了语音信号采集与分析的发展史
4、以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。关键词:语音信号,采集与分析, Matlab Audio signal acquisition and analysisAuthor: zhuyousong Teacher guidance:lifuqiangAbstractSpeech signal acquisition and analysis techniques are a wide range of cross-scientific,Its application and developm
5、ent of voice study, sound measurement study, electronic measuring technology, and digital signal processing disciplines, such as close contact。Collection and analysis of voice one of the small-scale equipment, intelligence, digital and multi-functional development of more and more quickly, faster th
6、an the previous analysis has been substantially high。This paper introduces the voice signal acquisition and analysis of the history of the development, as well as the characteristics of speech signal,Collection and analysis methods,Recording machine through the PC section of my own voices,the use of
7、 Matlab for simulation analysis,finally add the noise filter to deal with,comparison of filter before and after Change。Keywords:audio signal, acquisition and analysis,MATLAB 目 录摘 要3Abstract4目 录5第1章 绪 论61.1 课题的背景与意义61.2 国内外研究现状61.3 本文主要工作81.4本文的仿真软件Matlab8第2章 语音信号的特点与采集92.1 语音信号的特点92.2语音信号的采集9第3章 语音信
8、号的分析123.1语音信号分析技术123.2 语音信号的时域分析123.2.1 短时能量及短时平均幅度分析133.2.2短时过零率分析133.3 语音信号的频域分析153.3.1利用短时博里叶变换求语音的短时谱153.4 语音信号的语谱图17第4章 语音信号的综合仿真分析20总 结22致 谢23参 考 文 献24附录一:25附录二:25附录三:26附录四:26附录五:27第1章 绪 论1.1 课题的背景与意义通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最
9、主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。 让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足
10、的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。语音信号采集与分析之所以能够那样长期地、深深地吸引广大科学工作者去不断地对其进行研究和探讨,除了它的实用性之外,另一个重要原因是,它始终与当时信息科学中最活跃的前沿学科保持密切的联
11、系并且一起发展。语音信号采集与分析是以语音语言学和数字信号处理为基础而形成的一门涉及面很广的综合性学科,与心理、生理学、计算机科学、通信与信息科学以及模式识别和人工智能等学科都有着非常密切的关系。对语音信号采集与分析的研究一直是数字信号处理技术发展的重要推动力量。因为许多处理的新方法的提出,首先是在语音信号处理中获得成功,然后再推广到其他领域。1.2 国内外研究现状语音信号的采集与分析作为一个重要的研究领域,已经有很长的研究历史1。但是它的快速发展可以说是从1940年前后Dudley的声码器(vocoder)和potter等人的可见语音Visible Speech)开始的。1952年贝尔(Be
12、ll)实验室的Davis等人首次研制成功能识别十个英语数字的实验装置。1956年Olson和Belar等人采用8个带通滤波器组提取频谱参数作为语音的特征,研制成功一台简单的语音打字机。20世纪60年代初由于Faut和Steven的努力,奠定了语音生成理论的基础,在此基础上语音合成的研究得到了扎实的进展。 20世纪60年代中期形成的一系列数字信号处理方法和技术,如数字滤波器、快速博里叶变换(FFT)等成为语音信号数字处理的理论和技术基础。在方法上,随着电子计算机的发展,以往的以硬件为中心的研究逐渐转化为以软件为主的处理研究。然而,在语音识别领域内,初期有几种语音打字机的研究也很活跃,但后来已全部
13、停了下来,这说明了当时人们对话音识别难度的认识得到了加深。所以1969年美国贝尔研究所的Pierce感叹地说“语音识别向何处去?”。 到了1970年,好似反驳Pierce的批评,单词识别装置开始了实用化阶段,其后实用化的进程进一步高涨,实用机的生产销售也上了轨道。此外社会上所宣传的声纹(Voice Print)识别,即说话人识别的研究也扎扎实实地开展起来,并很快达到了实用化的阶段。到了1971年,以美国ARPA(American Research Projects Agency)为主导的“语音理解系统”的研究计划也开始起步。这个研究计划不仅在美国园内,而且对世界各国都产生了很大的影响,它促进了
14、连续语音识别研究的兴起。历时五年的庞大的ARPA研究计划,虽然在语音理解、语言统计模型等方面的研究积累了一些经验,取得了许多成果,但没能达到巨大投资应得的成果,在1976年停了下来,进入了深刻的反省阶段。但是,在整个20世纪70年代还是有几项研究成果对语音信号处理技术的进步和发展产生了重大的影响。这就是20世纪70年代初由板仓(Itakura)提出的动态时间规整(DTW)技术,使语音识别研究在匹配算法方面开辟了新思路;20世纪70年代中期线性预测技术(LPC)被用于语音信号处理,此后隐马尔可夫模型法(HNMM)也获得初步成功,该技术后来在语音信号处理的多个方面获得巨大成功;20世纪70年代未,
15、Linda、Buzo、Gray和Markel等人首次解决了矢量量化(VQ)码书生成的方法,并首先将矢量量化技术用于语音编码获得成功。从此矢量量化技术不仅在语音识别、语音编码和说话人识别等方面发挥了重要作用,而且很快推广到其他许多领域。因此,20世纪80年代开始出现的语音信号处理技术产品化的热溯,与上述语音信号处理新技术的推动作用是分不开的。 20世纪80年代,由于矢量量化、隐马尔可夫模型和人工神经网络(ANN)等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。其中,隐马尔可夫模型作为语音信号的一种统计模型,在语音信号处理的各个领域中获得了广泛的应用。其理
16、论基础是1970年前后,由Baum等人建立起来的,随后,由美国卡内基梅隆大学 (CMU)的Baker和美国IBM公司的Jelinek等人将其应用到语音识别中。由于美国贝尔实验室的Babiner等人在20世纪80年代中期,对隐马尔可夫模型深人浅出的介绍,才使世界各国从事语音信号处理的研究人员了解和熟悉,进而成为一个公认的研究热点,也是目前语音识别等的主流研究途径。进入20世纪90年代以来,语音信号采集与分析在实用化方面取得了许多实质性的研究进展。其中,语音识别逐渐由实验室走向实用化。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工种经网络的结
17、合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。 1.3 本文主要工作本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。第2章主要介绍语音信号的特点与采集,仿真主要是验证奈奎斯特定理。第3章主要是对语音信号进行时域、频域上的分析,如短时功率谱,短时能量,短时平均过零率,语谱图分析等等。第4章是对语音信号的综合和分析,包括语音信号的调制,叠加,和滤波。1.4本文的仿真软件Matl
18、abMATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分4。MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表
19、达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C+,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 第2章 语音信号的特点与采集2.1 语音信号的特点通过对大量语音信号的观察和分析发现,语音信号主要有下面两个特点: 在频域内,语音信号的频谱分量主要集中在3
20、003400Hz的范围内。利用这个特点,可以用一个防混迭的带通滤波器将此范围内的语音信号频率分量取出,然后按8kHz的采样率对语音信号进行采样,就可以得到离散的语音信号。 在时域内,语音信号具有“短时性”的特点,即在总体上,语音信号的特征是随着时间而变化的,但在一段较短的时间间隔内,语音信号保持平稳。在浊音段表现出周期信号的特征,在清音段表现出随机噪声的特征。下面是一段语音信号的时域波形图(图2-1)和频域图(图2-2),由这两个图可以看出语音信号的两个特点。 图2-1语音信号时域波形图 图2-2语音信号频域波形图Figure 2-1Speech signal time-domain wave
21、form Figure 2-2 Frequency-domain speech signal waveform2.2语音信号的采集在将语音信号进行数字化前,必须先进行防混叠预滤波,预滤波的目的有两个:抑制输入信导各领域分量中频率超出fs/2的所有分量(fs为采样频率),以防止混叠干扰。抑制50Hz的电源工频干扰。这样,预滤波器必须是一个带通滤波器,设其上、下截止颜率分别是fH和fL,则对于绝人多数语音编译码器,fH=3400Hz、fL60100Hz、采样率为fs8kHz;而对丁语音识别而言,当用于电话用户时,指标与语音编译码器相同。当使用要求较高或很高的场合时fH4500Hz或8000Hz、f
22、L60Hz、fs10kHz或20kHz。为了将原始模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔t在模拟信号x(t)上逐点采取其瞬时值。采样时必须要注意满足奈奎斯特定理,即采样频率fs必须以高于受测信号的最高频率两倍以上的速度进行取样,才能正确地重建波它是通过采样脉冲和模拟信号相乘来实现的。下图时一段语音信号在采样频率44.1KHz情况下的频谱图。由图可知,这段语音信号的频率主要集中在1KHz左右,当采样频率为44.1KHz时,由于采样频率比较大,所以采样点数就越密,所得离散信号就越逼近
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB 语音 信号 采集 分析 毕业论文 设计
链接地址:https://www.31ppt.com/p-3938809.html