基于MATLAB的PQ分解法电力系统潮流计算毕业设计.doc
《基于MATLAB的PQ分解法电力系统潮流计算毕业设计.doc》由会员分享,可在线阅读,更多相关《基于MATLAB的PQ分解法电力系统潮流计算毕业设计.doc(51页珍藏版)》请在三一办公上搜索。
1、基于P-Q分解法的电力系统潮流计算摘 要电力系统潮流计算是研究电力系统稳定运行情况的一种重要的计算,在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用它来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。本文主要介绍了电力系统潮流计算的基本原理(包括电力网络的数学模型和潮流计算的数学模型)及潮流计算常用的几种方法,着重介绍了P-Q分解法。P-Q分解法是潮流计算的常用方法之一,派生于用极坐标表示的牛顿-拉夫逊法,是牛顿-拉夫逊法的一种简化计算方法,可以提高运算的速度。其中比较详细地讲述了P-Q分解法的形成过程及计算流程,而且结合一个具有代表性的算例,用P-Q分解法进行潮流计算,
2、其计算过程是通过MATLAB软件实现的,并对计算结果进行了简要的分析。关键词:电力系统潮流计算,P-Q分解法,MATLAB软件 Based on P - Q Decomposition Method of The Power System Flow Calculation ABSTRACTPower System Flow Calculation is an important analysis and calculation of power system steady-state operation,. In the study of power system design and the
3、 current operation mode are required Power Flow Calculation to quantitatively analyzed and compared to the program or run mode power supply reasonable, reliability and economy or not.This article mainly introduced the basic principles of Power System Flow Calculation (including the mathematical mode
4、l of electric power network and the mathematical model of power flow calculation) and the main methods of power flow calculation, introduces the P - Q Decomposition Method. P - Q Decomposition Method is one of the commonly used method to compute the tidal current, derived from Newton - Ralph express
5、ed in polar coordinate method, Newton - Ralph Method, a simplified calculation method can improve the speed of operation. One more detail tells the story of the formation process of P - Q Decomposition Method and calculation process, and combined with a typical example, using P - Q Decomposition Met
6、hod for power flow calculation, the calculation process is implemented by MATLAB software, and the calculation results are analyzed in brief.KEY WORDS: Power System Flow Calculation,P - Q Decomposition Method,MATLAB software目录前言1第1章 绪论21.1 潮流计算简介21.2 潮流计算的意义及其发展21.2.1 潮流计算的意义21.2.2 潮流计算的现状及其发展31.3 本
7、毕业设计的主要内容3第2章 电力系统潮流计算的基本原理52.1 电力网络的数学模型52.1.1 电力网络的基本方程式52.1.2 节点导纳矩阵及其性质72.2 潮流计算的数学模型82.2.1 潮流计算的节点分类82.2.2 潮流计算的基本方程92.2.3 潮流计算的约束条件10第3章 潮流计算的方法123.1 高斯-赛德尔法123.1.1 高斯-赛德尔法的基本原理123.1.2 高斯-赛德尔法的潮流计算过程123.2 牛顿-拉夫逊法143.2.1 牛顿-拉夫逊法的基本原理143.2.2 牛顿-拉夫逊法的潮流计算过程143.3 P-Q分解法15第4章 P-Q分解法潮流计算164.1 极坐标下的潮
8、流计算模型164.2 P-Q分解法潮流计算184.3 P-Q分解法潮流计算的基本步骤20第5章 算例验证与分析225.1 MATLAB软件225.2 算例225.2.1 算例说明225.2.2 潮流计算过程235.3 算例结果分析27结论28谢 辞29参考文献30附 录31外文资料翻译40 前言电力是衡量一个国家经济发展的主要指标,也是反映人民生活水平的重要标志,它已成为现代工农业生产、交通运输以及城乡生活等各方面不可或缺的能源和动力。电力系统是由发电、输电、变电、配电及用电等环节组成的电能生产与消费系统。它是将自然界的一次能源通过发电动力装置转化为电能,再经输、变、配电将电能供应到各个用户。
9、为此,电力系统在各个环节和不同层次上还应具有相应的信息与控制系统,以便对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。电力系统的出现,使电能得到广泛应用,推动了社会生产各领域的变化,开创了电力时代,是近代史上的第二次技术革命。随着电力系统的发展,动力资源开发更加充分,工业布局也更加合理。如今,电力系统的发展程度和技术水准已成为各国经济发展水平的标志之一。而潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可或缺的一个重要组成部分。可以说,它是电力系统分析中最基本、最
10、重要的计算,是系统安全、经济分析和实时控制与调度的基础,是电力系统研究人员长期研究的一个课题。P-Q分解法是潮流计算的常用方法之一,它是对极坐标下的牛顿-拉夫逊法的一种简化。它的基本思想是根据电力系统实际运行特点对牛顿-拉夫逊法的修正方程进行简化,但是这种简化并不影响计算的精度。它要求的迭代次数较采用牛顿-拉夫逊法时多,但每次迭代所需时间则较牛顿-拉夫逊法时少,从总的计算速度上来说,P-Q分解法要比牛顿-拉夫逊法快。因此,运用P-Q分解法进行潮流计算时,可以提高运算的速度。而MATLAB软件具有强大的矩阵处理功能,是潮流计算的首选工具。 第1章 绪论1.1 潮流计算简介电力系统潮流计算是研究电
11、力系统稳定运行情况的一种计算,它根据给定的运行条件及系统接线情况来确定整个电力系统各部分的运行状态、各母线电压、各元件中流过的功率、系统的功率损耗等。在电力系统的规划设计和现有电力系统运行方式的研究中,需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。此外,电力系统潮流计算也是系统动态稳定和静态稳定的基础。因此,潮流计算是研究电力系统的一种很重要也很基础的计算,是电力系统研究人员长期研究的一个课题。电力系统潮流计算分为离线计算和在线计算两种,前者主要用于系统规划设计和安排系统的运行方式,后者则主要用于对正在运行系统的随时监视和及时控制。对电力系统潮流计算的要求有三点:
12、计算方法的可靠性或收敛性;占用内存少、计算速度快;计算的方便性和灵活性。1.2 潮流计算的意义及其发展1.2.1 潮流计算的意义潮流计算的目标是求取电力系统在给定运行状态的计算,即节点电压和功率分布,用以检查系统各元件是否过负荷,各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。现有的电力系统的运行和扩建、新的电力系统的规划设计以及对电力系统进行静态和稳态分析都是以潮流计算为基础。潮流计算的结果可用于如电力系统稳态研究、安全估计或最优潮流等。在运行方式管理中,潮流是确定电网运行方式的基本出发点;在规划领域,需要运用潮流分析来验证规划方案的合理性;在实时运行环境,调度员潮流提供了多个
13、在预想操作情况下电网的潮流分布以及校验运行的可靠性。在电力系统调度运行的多个领域,潮流问题都是研究电力系统稳态问题的基础和前提。1.2.2 潮流计算的现状及其发展潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。利用计算机进行潮流计算始于20世纪50年代,当时求解的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。到20世纪60年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊法。由于牛顿-拉夫逊法在收敛性、占用内存、计算速度方面都超过了阻抗法,因而成为20世纪60年代末以后普遍采
14、用的方法。同时国内外也广泛研究了诸如非线性规划法、直流法、交流法等各种不同的潮流计算方法。20世纪70年代以来,又涌现了更新的潮流计算方法。其中有快速分解法和保留非线性的高速潮流计算法,而快速分解法从1975年就开始在国内使用,并习惯被称之为P-Q分解法。P-Q分解法在计算速度上大大超过了牛顿-拉夫逊法,不但能应用于离线潮流计算,也能用于在线潮流计算,因而受到很多人的青睐。目前对潮流算法的研究仍然非常活跃,但大多数都是围绕着改进的牛顿-拉夫逊法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法等也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代
15、牛顿-拉夫逊法和P-Q分解法的地位。随着电力系统规模的扩大和对计算速度要求的提高,计算机并行计算技术也将成为潮流计算中重要的研究领域。1.3 本毕业设计的主要内容本文主要是分析电力网络的运行状况,运用P-Q分解法进行潮流计算,具体来讲要完成以下两点:(1)学习潮流计算的基本原理。本文对电力系统网络导纳矩阵的形成过程及几种常见的潮流计算算法进行了介绍,并详细讲述了P-Q分解法的基本原理及形成过程。(2)举例分析。真实的电力网络是既简单又复杂的,其简单性在于所包含的电气元件基本相同,而复杂性在于网络结构多试多样。本文引用了一个基本含有所有类型元件,并包含少许节点和线路的例子。通过软件编程和手工计算
16、两种方法进行潮流计算,并对结果进行了简要的分析。第2章 电力系统潮流计算的基本原理2.1 电力网络的数学模型所谓数学模型,是指反映电力系统中运行状态参数(如电压、电流、功率等)与网络参数之间的关系,反映网络性能的数学方程式。不难想象,符合这种要求的方程式有节电压方程、回路电流方程、割集电压方程等1。2.1.1 电力网络的基本方程式电力网络可以用结点方程式或回路方程式表示出来。在结点方程式中表示网络状态的变量是各节点的电压,在回路方程式中是各回路中的回路电流2。一般若给出网络的支路数b,结点数n,则回路方程式数m为:m=b-n+1,结点方程式数m为:m=n-1,因此,回路方程式数比结点方程式数多
17、d=m-m=b-2n+2。在一般电力系统中,各结点(母线)和大地间有发电机、负荷、线路电容等对地支路,结点和结点之间也有输电线路和变压器支路,一般b2n,而且用结点方程式易建立直观的方程式,输电线连接状态的变化时也易变更网络方程式。因此,电力系统的基础网络方程式一般用结点方程式表示,电力系统基本网络如图2-1所示。图2-1 电力系统基本网络上图中,把发电机端子和负荷端子抽出来,剩下的输电线路及其它输电系统表示为Net网络。在发电机结点和负荷结点上标出任意序号:1,2,n。在Net内部不包含电源,并且各节点和大地间连接的线路对地电容、电力电容器等都作为负荷来处理。令端子1,2,n的对地电压分别为
18、,由各端子流向输电系统Net的电流相应为,则此网络方程组可表示为 (2-1)式(2-1)可简写为 (2-2)或写成 (2-3)其中 (2-4)式(2-4)的Y 称为节点导纳矩阵。因输电系Net仅有无源元件构成,而导纳矩阵是对称矩阵,于是有 (2-5)电压V和电流I的关系用式(2-1)(2-5)表示时称为节点导纳方程式。若电压V用电流I表示,则(2-3)式可化为 (2-6) (2-7)式(2-7)称为节点阻抗方程式,阻抗矩阵也是对称矩阵。2.1.2 节点导纳矩阵及其性质电力网络的节点电压方程: (2-8)式(2-8)中 为节点注入电流列向量。由于规定注入网络的电流为正,流出网络的电流为负,因此,
19、电源节点的电流为正,负荷节点的电流为负。而既无电源又无负荷的联络节点为零,带有地方负荷的电源节点为二者代数之和。式(2-8)中 为节点电压列向量。由于节点电压是对参考节点而言的,因而要先参考节点。在电力系统中,一般选大地作为参考节点,若整个网络无接地支路,则需选定某一节点作为参考节点。假设网络中节点数为(不含参考节点)n,则、均为n维列向量,为nn阶节点导纳矩阵。节点导纳矩阵的节点电压方程:,展开为: (2-9)是一个nn阶节点导纳矩阵,其阶数就等于网络中除参考节点外的节点数。节点导纳矩阵的对角元素(i=1,2,n)称为自导纳, 相当于在节点i处施加单位电压,其它节点全部接地时,经节点i注入网
20、络的电流,即 (2-10)而 在数值上就等于与节点i直接相连的所有支路导纳的总和。节点导纳矩阵的非对角元素(i=1,2,n ;j=1,2,n ;ij)称为互导纳, 相当于在节点i施加单位电压,其它节点全部接地时,经节点j注入网络的电流,即 (2-11)而 数值上就等于连接节点i、j支路的导纳的负值,显然 恒等于。由上述可知,有如下性质:(1) 是方阵,其阶数等于除参考节点外的节点数(一般,取大地为参考节点,编号为零)。(2) 的对角元素等于与该节点所连接导纳的总和,在与无接地支路的节点对应的行和列中,对角元素为非对角元素之和的负值。(3) 的非对角元素等于连接节点i,j支路导纳的负值。一般情况
21、下,的对角元素往往大于非对角元素的负值,即。(4) 一般是对称矩阵,即,这是由网络的互异特性决定的,一般只要求求取这个矩阵的上三角或下三角部分。若网络中含有源元件(如移相变压器),则对称性不再成立。(5) 是稀疏矩阵,其各行非零非对角元素就等于与该行相对应节点所连接的不接地支路数。一般,网络越大,节点数越多,的零元素也越多,稀疏性越强1。2.2 潮流计算的数学模型2.2.1 潮流计算的节点分类用一般的电路理论求解网络方程,目的是给出电压源(或电流源)研究网络内的电流(或电压)分布,一般用线性方程式表示。而在电力系统中,给出发电机或负荷连接母线上电压或电流(都是向量)的情况是很少的。一般是给出发
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB PQ 解法 电力系统 潮流 计算 毕业设计
链接地址:https://www.31ppt.com/p-3938728.html