基于BP网络的车牌字符识别毕业设计(论文).doc
《基于BP网络的车牌字符识别毕业设计(论文).doc》由会员分享,可在线阅读,更多相关《基于BP网络的车牌字符识别毕业设计(论文).doc(44页珍藏版)》请在三一办公上搜索。
1、(2013届)本科毕业设计(论文)资料题 目 名 称: 基于BP网络的车牌字符识别 学 院(部): 专 业: 学 生 姓 名: 班 级: 学号 指导教师姓名: 职称 职称 最终评定成绩: 湖南工业大学教务处 2013届本科毕业设计(论文)资料第一部分 毕业论文(2013届)本科毕业设计(论文)学 院(部): 电气与信息工程学院 专 业: 电子信息工程 学 生 姓 名: 班 级: 学号 指导教师姓名: 职称 职称 最终评定成绩 2013年6月 摘 要基于BP网络的车牌字符识别是一门对车牌字符识别的技术,它的产生是为了完善智能交通系统,使得交通系统更具有信息时代意义。本文利用BP神经网络与图像处理
2、技术相结合的方法,将BP神经网络应用到车牌字符识别中。针对车牌图像的处理的过程包括:车牌图像去噪、车牌图像灰度化、车牌图像二值化、车牌字符图像分割、车牌字符图像归一化、车牌字符图像特征值提取。前面五个过程是为了保证字符信息能更好的体现出来有利于将特征值得提取。BP神经网络通过对组建的车牌字符库的学习后才会具有识别功能,然后将车牌字符图像提取到的特征值送入到BP神经网络中就能识别出来。通过实验证明了通过上述的过程是能够将车牌字符识别出来,在这个识别过程中对于BP网络训练的收敛性是十分重要的,本文认为可以通过修改隐含层节点的个数、训练函数和激发函数来完成BP网络的训练以使得BP神经网络具有识别功能
3、。对于识别的关键部分在于对特征值的提取,只有采可靠的提取办法才能保证字符信息部丢失这样才有利于识别。关键词:车牌字符识别,BP神经网络,特征值提取ABSTRACTBP network based license plate character recognition is one pair of license plate character recognition technology, which is produced in order to improve intelligent transportation system, making the transport system mo
4、re meaningful information age.In this paper, BP neural network and image processing technology, a combination of methods will be applied to the license plate BP neural network character recognition. For the license plate image processing process includes: license plate image denoising, gray plate im
5、age, license plate image binarization, license plate character segmentation, license plate character image normalization, license plate character image feature extraction. During the previous five character information in order to ensure better reflected the benefit is worth the feature extraction.
6、Through the formation of BP neural network library for license plate character recognition function after learning will have, and then extract the license plate character image characteristic value fed to BP neural network can be identified.The experimental results show the process by the above lice
7、nse plate characters can be identified, in this process for identifying convergence BP network training is very important that this can modify the number of nodes in the hidden layer, training function and stimulate function to complete BP network training to enable BP neural network has recognition
8、. For the identification of the key part of the feature value extraction, mining only reliable way to ensure the character information extracting unit lost that help identify, extract the paper also proposed several ways.Keywords: LPR,BP neural network,Feature extraction目 录摘 要IABSTRACTII目 录III第1章 绪论
9、11.1 车牌识别技术11.1.1 车牌识别技术11.1.2 智能交通系统21.2国内外研究现状41.3本文研究内容4第2章 字符识别方法62.1 车牌图像预处理62.1.1 车牌规律62.1.2车牌图像去噪72.1.3车牌图像的灰度化和二值化72.2 字符分割92.2.1 边缘检测102.2.2 字符切割112.2.3 字符图像归一化122.2.4字符特征值提取122.3 BP神经网络142.3.1 BP网络152.3.2 BP网络的模型结构152.3.3 BP网络算法17第3章 基于BP网络的字符识别203.1 车牌图像预处理实现203.1.1 车牌图像滤波实现203.1.1 灰度化技术及
10、二值化实现203.1.2 车牌图像分割实现233.1.3 归一化和字符特征提取实现253.2 字符库与BP网络的建立273.3 BP网络字符识别31第4章 结 论33参考文献I致 谢II第1章 绪论 1.1 车牌识别技术1.1.1 车牌识别技术二十一世纪是一个信息化时代,是经济和科技飞速发展的时期,智能系统被广泛应用到人们生活当中。国民经济快速的发展在当今许多的人拥有了私家车,这使得城市交通问题日益严峻起来1。对于交通的管制也不能全靠交警来完成,这时智能交通系统便产生了。智能交通系统是以信息技术为代表,融合先进的电子技术、控制技术、传感器技术以及计算机处理技术等,应用于各种交通场合的综合管理系
11、统。智能交通系统中包括了许多部分,而其中最为关键的部分就是要能对车辆进行识别。车辆的信息主要在于它的车牌,车牌就是车辆的身份证,每辆车都有唯一对应的车牌号码,通过车牌号码就了解到车辆的信息。智能交通系统要对车牌进行识别就是要让计算机能自动识别出车辆的车牌,这个识别过程有许多方法,其中最简单的办法就是将已有的车牌号码存入到计算机中,再将抓拍到的车牌号码进行对比。这种办法需要计算机有大量的存储空间和全部的车牌模板,并且对抓拍到的车牌图像要求比较高,否则是很难识别出来的。在现代神经网络算法得到广泛应用,这种算法是根据生物神经网络而建立起来的模型能较好的实现人类存储知识及处理信息的技能,使得系统可以模
12、拟人类思维。神经网络中BP网络是其中应用比较广泛技术较为成熟的网络,BP网络在如今已被广泛的应用各个行业领域,它优越性主要体现于四个方面:函数逼近、模式识别、分类、数据压缩。由于在各个行业领域它已经得到了生活应用,所以BP网络技术也相对成熟,而且BP网络的变化形式也多种多样,采用BP网络作为车牌字符识别技术是一个相对合理选择2。对于车牌识别还有一个较为关键的问题,经过统计发现车牌字符是有规律的。在存储空间上把车牌字符分割出来就可以大大减小存储空间,这是由于车牌字符的组成的原因。对于识别方面分割字符必须比较精准才能使得识别正确,所以对于字符图像的切割也要选取较为合理。而对于图像的切割就包含了一列
13、的图像处理问题,图像处理技术的好坏是直接影响到识别的准确性的3。所以基于BP网络的车牌字符识别不仅仅是对BP网络进行研究也要对图像处理技术进行研究,这样才能使得计算机能准确的识别出车辆的车牌。车牌识别技术是现代智能交通系统重要组成部分,其应用十分广泛。它以计算机视觉处理、数字图像处理、模式识别等技术为基础,对摄像机所拍摄的车辆图像或者视频图像进行处理分析,得到每辆车的车牌号码,从而完成识别过程。通过一些后续处理技术其可以实现停车场出入口收费管理、盗抢车辆管理、高速公路超速自动化管理、闯红灯电子警察、公路收费管理等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通全自动化管理有着现实的意
14、义车牌识别技术实现的方法主要是模板匹配法和人工神经网络法,模板匹配法需要实际得到的车牌字符图像与标准库的车牌字符图像完全达到匹配要求才能识别。而人工神经网络它是具有一定的容错能力的,所以它相对于模板匹配法精度要求每那么高,但是实现比较复杂。识别方法的好坏在于它们的识别率和识别速度。识别技术是智能交通系统的关键技术,是现在智能交通系统主要研究的对象。识别技术不仅是在智能交通系统中被用到,在其它领域也是被广泛应用,研究这门技术对社会的发展起着重大作用。1.1.2 智能交通系统智能交通系统起源于二十世纪六七十年代的交通管理计算机实施。美国早在1989年制定了智能交通系统发展计划“IVHS战略”4。
15、我国部分学者于1994年参加了在法国巴黎的第一届智能交通系统世界大会,为我国智能交通系统的发展揭开了序幕。交通部公路科学研究所于1996年开始了交通部重点项目智能运输系统发展战略研究工作,在1999年正式出版发行智能运输系统发展战略研究一书。1999年,交通部公路科学研究所组织全国数百名专家学者投入到“九五”国家科技攻关重点项目中国智能交通系统体系框架研究工作,于2001年把课题完成,并且顺利通过国家科技部验收,2002年发行中国智能交通系统体系框架一书。2000年,我国国家科技部主办北京第四届亚太地区智能交通年会,并且得到全国ITS协调指导小组办公室协助。同年,科技部与国家计委、公安部、经贸
16、委、交通部、铁道部、建设部、信息产业部等相关性部门的充分协商和酝酿的基础上,建立了发展中国智能交通系统的政府协调领导机构全国智能交通系统协调指导小组及办公室,并成立了智能交通系统专家咨询委员会。2002年4月科技部正式批复“十五”国家科技攻关“智能交通系统关键技术开发和示范工程”重大项目正式实施,北京、上海、天津、重庆、广州、深圳、中山、济南、青岛、杭州十个城市作为首批智能交通应用示范工程的试点城市。2002年9月,由中国科技部和交通部共同举办的“第二届北京国际智能交通系统技术研讨暨技术与产品展览会”在北京举行。2003年11月,科技部马颂德副部长第一次率中国政府代表团参加在西班牙马德里举办的
17、第十届智能交通系统世界大会,科技部联合交通部、建设部、公安部和北京市政府联合申办“2007年第十四届智能交通系统世界大会”获得成功,标志着中国的智能交通系统建设将在更加开放、竞争与合作并存的环境中加速发展。2004年10月,科技部第一次大规模组团参加第十一届在日本名古屋举办的第十一届智能交通系统世界大会,中国政府展览团在智能交通系统大会的首次展览,获得成功。2007年,第十四届智能交通世界大会在北京展览馆举行。大会展示了中国多年来各部门、各地区在ITS领域所取得的成就,并加强了中国在智能交通系统领域的对外交流。2012,由北京交通大学主办,香港交通运输协会协办的2012年智能交通系统国际研讨会
18、在中苑宾馆举行。本次国际会议旨在加强智能交通系统领域专家学者的学术交流,进一步加深我国与其他国家和地区在智能交通系统领域的合作与研究,扩大我国交通科学研究在国际上的影响。智能交通系统可划分成四个子系统。1)车辆控制系统指辅助司机驾驶车辆系统又称为替代司机智能驾驶车辆的系统。该系统是经过对汽车前部和旁侧安装的雷达或红外探测仪,可以准确地计算出车辆与障碍物之间的距离,遇危机情况,车辆中的电脑能迅速地发出警报或采取措施避让,而且可以根据路面情况自行调节行车速度,俗称“智能汽车”。2)交通监控系统类似于机场的航空控制器,它将在道路、车辆和驾驶员之间建立快速通讯联系。将道路的情况马上通知给驾驶员使得他能
19、选择一条好的道路走。3)运营车辆高度管理系统通过车辆中的电脑、高度管理中心计算机与全球定位系统卫星联网,实现驾驶员与调度管理中心之间的双向通讯,来提供商业车辆、公共汽车和出租汽车的运营效率。该系统通讯能力极强,可以对全国乃至更大范围内的车辆实施控制。4)旅行信息系统是一种能及时给外出旅行人员提供交通信息的系统。给这个系统提供信息的媒介是多种多样的,如电脑、电视、电话、手机、路标、网络等,任何一种方式都可以。不管你是在哪里,只要采用其中任何一种方式,你都能从该系统中获得所需要的信息。有了这个系统,外出旅行者就可以获得许多有效的信息对自己的行程安排可以好好的规划。而在本文中主要是研究智能交通系统中
20、交通监控系统中的一小部分,主要是实现基于BP网络的车牌字符识别,能进一步完善这个交通监控系统。智能交通监控系统是通过视频监控将视频监控区域的情况传输到指挥中心,使得管理人员能对监控区域的交通情况得到全面的了解,而且能根据区域内的交通情况,计算机进行自动处理。智能化的交通监控系统就相当于监控区域内站有交警一样,能够即使对一些交通问题进行处理。智能交通监控系统采用识别技术进行监控,有异常发生时就会自动通知交通人员,交通人员也可以及时得到车辆在监控区域内的基本情况,调整信号灯或者通过其他手段来疏导交通,改变交通流量的分布,已达到缓解交通堵塞的目的。总而言之,智能交通监控系统可以直观地监控交通肇事逃逸
21、案件的全过程。协助办案民警全面、直观了解交通事故发生过程,及时掌握逃逸车辆车型、颜色、碰撞损坏部位,为客观查证案发当时情况,追究事故责任提供最直接的依据。1.2国内外研究现状从制定智能交通系统发展计划“IVHS战略”开始人们就对对车牌识别技术进行研究,这是因为车牌识别是智能交通系统必不可少的技术。至今,智能交通系统一直在被研究着,说明车牌识别技术也没有停止研究过。到20 世纪 90 年代,随着电子技术的高速发展,计算机性能得到很大的提升,车牌识别技术被系统化地研究。如YuniaoCul提出了一种车牌识别系统,在车牌定位以后,利用马尔科夫场对车牌特征进行提取和二值化,对样本的识别达到了较高的识别
22、率。EunRyung等利用图像中的颜色分量,对车辆牌照进行定位识别,其中提到了三种方法:1)以Hough变换为基础的边缘检测定位识别;2)以灰度值变换为基础的识别算法;3)以HLS彩色模式为基础的车牌识别系统,识别率分别为81.25%、85%、91.25%。日本对车牌图像的获取也做了大量的研究,并为系统产业化做了大量工作4。目前,国内外已研制出相当一些实用的车牌识别系统,并已在电子收费、车流监控、出入控制、超速检测、移动稽查等场合进行应用,取得了一定的成就,但与人们所期望的需求目标仍有一定差距10。我国较成熟的产品有中科院自动化所汉王公司的“汉王眼”,深圳市科安信实业有限公司以及中国信息产业部
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 BP 网络 车牌 字符 识别 毕业设计 论文

链接地址:https://www.31ppt.com/p-3938264.html