国家级精品课程中南大学数学建模lingomatlab优化建模数模培训全国赛论文物流车辆调度问题研究.doc
《国家级精品课程中南大学数学建模lingomatlab优化建模数模培训全国赛论文物流车辆调度问题研究.doc》由会员分享,可在线阅读,更多相关《国家级精品课程中南大学数学建模lingomatlab优化建模数模培训全国赛论文物流车辆调度问题研究.doc(32页珍藏版)》请在三一办公上搜索。
1、物流车辆调度问题研究摘要物流车辆优化调度是物流系统优化中关键的一环,也是电子商务活动不可缺少的内容。通过对配送车辆进行优化调度,企业可以降低运输成本,提高顾客服务水平和经济效益,从而获得更多的利润, 而该类问题的解决在于寻找有效的装配方案和行车路线。本文以基本车辆路径问题(VRP)为基础,通过建立数学模型,寻找车辆调度的最优方案,从而为中心仓库提供明确的车辆调度方案。在中心仓库所收到客户订单的货物需求量是已知固定不变的情况下,通过对基本车辆路径问题的分析,分别建立模型和模型,得到在有时间窗问题下,车辆调度的最优方案。模型:带软时间窗的车辆路径优化模型带软时间窗的车辆路径问题由于与车辆数目及时间
2、(装卸货时间和每项任务执行时间)有关,因此我们首先对需要的车辆数目进行一个估计,并使线路安排具有一定的弹性。然后确定在软时间窗条件下的时间函数,同时,在考虑行驶线路的连通性以及一辆车所承担的任务量之和不大于车的容量等约束条件的情况下,建立总派送费用最小的车辆路径优化模型。最后提出一种可以求解这一模型且效果较好的粒子群算法(PSO)。模型:带硬时间窗的车辆路径优化模型基于模型的带软时间窗的车辆路径优化模型,我们在对模型简化中将客户对任务执行时间的要求增加,要求车辆必须在一定的时间范围内到达,不能提前也不能拖后,从而建立了带硬时间窗的车辆路径优化模型。在假设车辆数为3的前提下,利用lingo8.0
3、软件求解该模型,得到最优化路径的总运行最短距离min Z=910,同时求得车辆的路径分配方案:车1:0-6-4-0;车2:0-3-1-2-0;车3:0-8-5-7-0。模型:带时间窗的随机需求的车辆路径优化模型由于带时间窗的随机需求VRP问题中,客户i的货物需求量为随机参数,情况更贴近实际但却使得问题的复杂程度大大增加,为此我们引入了的概率分布函数,并考虑了客户需求量小于车辆k剩余运输能力的可能性以及满足车辆在时间窗内到达第i个客户的置信水平,从而在基本的车辆路径问题(VRP)基础上建立了带时间窗的随机需求的车辆路径优化模型。最后,通过分析两种分车辆路径问题,即静态的车辆路径问题(SVRP)(
4、模型和模型)和动态的车辆路径问题(DVRP)(模型),结合车辆路径问题中经常遇到的车辆的装载能力、不同货品之间的装载问题以及客户需求量的随机性等情况,我们向中心仓库提出调整车的容量、缩减或调整车的数量、分道规划等建议。一、问题重述1.1 基本情况一个中心仓库,拥有一定数量容量为Q的车辆,负责对N个客户进行货物派送工作,客户i的货物需求量为,且车辆必须在一定的时间范围内到达,早到达将产生等待损失,迟达将处以一定的惩罚。1.2 问题提出(1)给出使派送费用最小的车辆行驶路径问题的数学模型及其求解算法。(2)有8项货物运输任务(编号为1,2,8),各项任务的货运量 (单位:吨)、装货(或卸货)时间
5、(单位:小时)以及要求每项任务开始执行的时间范围由表1(附录1.1)给出,这些任务由车场0发出的容量为8吨的车辆来完成,车场0与各任务点以及各任务点间的距离(单位:公里)由表2(附录1.2)给出。这里假设车辆的行驶时间与距离成正比,每辆车的平均行驶速度为50公里/小时,问如何安排车辆的行驶路线使总运行距离最短。 (3) 进一步请讨论当客户i的货物需求量为随机参数时的数学模型及处理方法。二、问题分析车辆路线问题(Vehicle Routing Problem,简称VRP)考虑从一个或多个中心点出发的车辆将货物发送至一系列顾客并最后回到中心点,问题的解决在于寻找有效的行车路线,使总运行费用最省或者
6、总运行距离最短。为此需要对中心点的车辆建立一个合理的最优线路分配方案,使中心点以最少的成本获得最大的经济效益对于带软时间窗的VRP问题,可以在适当增加等待成本或接受迟到惩罚的前提下减少总成本,在总收益不变的情况下实现中心仓库获利的最大化;硬时间窗VRP问题中,由于只能在给定的时间窗内到达客户处,中心仓库在派送车辆时必须在满足客户时间窗要求的前提下最小化派送总成本;当客户需求为随机需求时,车辆在执行任务时根据自身的剩余运输能力以及下一客户的随机需求以一定的概率决定是不是继续服务下一个客户,以概率形式最优化车辆得总运行路径。三、模型假设(1)单物流中心,非满载,单车型,多目标配送问题;(2)中心仓
7、库拥有的车辆足够多;(3)不考虑货物的品名和包装,以及配送车辆的类型,货物可以混装;(4)装货(或卸货)的较简单及约束较少;(5)不考虑在货物运输和配送过程中,由于交通事故、天气变化等偶发因素等可能在造成的车辆旅行时间的变化;(6)每辆车最多被使用一次,每位客户有且只有一辆车服务,并且没有重复路线。四、符号说明Q :是车辆平均容量大小;: 第i个客户的货物需求量;N : 是客户的数量; 表示客户i处装货(或卸货)所需时间;: 表示从客户j处到客户i处所需时间; : 每项任务开始执行的时间; : 每项任务结束的时间;v :是每辆车的平均行驶速度。以上为符号说明的不完全归纳,其余符号说明见具体模型
8、五、模型的建立与求解车辆路线问题是考虑在车队为一些有需求的顾客运送货物时如何安排行驶路线,从而使服务效率达到最高,在原有车辆路线问题的基础上,着重考虑车辆路线问题中客户的随机性及客户接受服务的时间窗约束,建立车辆路径优化模型,并用粒子群算法进行求解, 寻找有效的行车路线,使总运行费用最省及总运行距离最短。下图为车辆路径问题的基本示意图。图5.1 车辆路径问题示意图5.1 带软时间窗的车辆路径优化模型由题意可知,该题是在基本车辆路径(VRP)问题上加了客户要求访问的时间窗口的带时间窗的车辆路径问题(Vehicle Routing Problem With Time Windows, VRPTW
9、),为此我们建立了带软时间窗的车辆路径模型。为求解这一模型,我们采用粒子群算法(PSO , Particle Swarm Optimization),它是最近出现的一种模拟鸟群飞行的仿生算法,与一般的启发式算法相比有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将将PSO 应用于车辆路径问题求解中, 取得了很好的效果。5.1.1 模型的准备(1)车辆数的确定一般来说,当问题的约束越多,组织线路就越难,一辆车所完成的满足所有约束的任务就越少,这时,一辆车实际所能容纳的任务量要小,而所用的车辆数可能要多。为了安排路线,须预先对需要的车辆数进行一个估计
10、。为了使线路安排具有一定的弹性,可按下式确定车辆数: (1)式中, 表示不大于括号内数字的最大整数;0a6-4-0;表5.2 车二的行驶路线:012345678012345678000100000001000000100000000010000000000000000000000000000000000000000000000000000可知:车二的行驶路径为:0-3-1-2-0;表5.3车三的行驶路线:012345678012345678000000001000000000000000000000000000000000000000000010000000000100000000000001
11、000 可知:车三的行驶路径为:0-8-5-7-0。5.3 带时间窗的随机需求VRP优化模型在实际问题中,顾客的需求往往是随机的,即客户i的货物需求量 为随机参数,因此我们在模型I的基础上将静态的VRP(SVRP)模型转化为动态的VRP(DVRP)模型。5.3.1 模型的准备假设顾客的需求和车辆到达顾客的时间是随机的,并且服从的分布为;某一车辆k服务s(sN)个客户后,其总运载量为;车辆k的剩余运载能力为;下一客户需求量小于车辆k剩余运输能力的可能性为。在客户的需求为随机需求时,当车辆k的剩余运输能力越大,下一个客户的需求量越小,该车能够服务下个客户的机会就越大,我们希望车辆k服务下一客户时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 国家级 精品课程 中南 大学 数学 建模 lingomatlab 优化 数模 培训 全国 论文 物流 车辆 调度 问题 研究
链接地址:https://www.31ppt.com/p-3937472.html