含硼铸态铁素体不锈钢1Cr17的点蚀行为研究毕业论文.doc
《含硼铸态铁素体不锈钢1Cr17的点蚀行为研究毕业论文.doc》由会员分享,可在线阅读,更多相关《含硼铸态铁素体不锈钢1Cr17的点蚀行为研究毕业论文.doc(44页珍藏版)》请在三一办公上搜索。
1、毕业设计(论文) 含硼铸态铁素体不锈钢1Cr17的点蚀行为研究 学 生 姓 名 学 号 专 业 班 级 指 导 教 师 提 交 日 期 材料科学与工程学院摘要本课题主要研究微量硼元素含量变化(0ppm 、16ppm、22ppm、28ppm)对铸态铁素体不锈钢1Cr17点蚀行为的影响。本试验用20204mm的腐蚀试样,一种方法是测硼含量不同的试样在6三氯化铁溶液中的腐蚀速率;另一种方法是电化学腐蚀方法,即测试样在3.5的氯化钠介质中的极化曲线和循环阳极极化曲线,并从该曲线上读出和计算一些参数。通过这两种方法来表征硼含量对1Cr17点蚀行为的影响。试验结果表明,1Cr17中加入硼元素使其对点蚀的敏
2、感性上升,耐点蚀性能下降。关键词:不锈钢,硼含量,点腐蚀ABSTRACTThis topic research trace boron content changes from16ppm to 33ppm of as-cast ferritic stainless steel 1Cr17 pitting the influence of behavior. This experiment with 20 x 20 x 4 mm of corrosion specimens, a method is to measure boron content in different samples in
3、 6% chloride-ferric chloride solution of the corrosion rate; Another method is the electrochemical corrosion method, that is 3.5% of the sample test in sodium chloride medium polarization curves and circulation anode polarization curves, and from this curve read on the calculation and some parameter
4、s. Through these two methods to represent the content of boron 1Cr17 pitting the influence of behavior. The test results show that the 1Cr17 to the elements of boron pitting the sensitivity of the rise, the cavitation performance drop resistant materrial. KEY WORDS: stainless steel,boron content,pit
5、ting corrosion 目 录摘要IABSTRACTII第一章 文献综述11.1铁素体不锈钢相图、铸态组织及性能特点11.1.1 Fe-Cr二元相图及1Cr17铁素体不锈钢铸态组织特征11.1.2铁素体不锈钢性能特点11.2硼元素在钢中的作用21.2.1硼在钢中的存在形式21.2.2硼对钢组织的影响21.2.3硼对钢性能的影响31.3不锈钢点蚀机理和影响因素51.3.1点蚀机理51.3.2影响点蚀的各种因素71.4铁素体不锈钢的极化曲线71.4.1极化曲线71.4.2极化曲线的测定81.5点蚀的评价方法91.5.1浸泡腐蚀91.5.2点蚀点位测量方法101.5.3阳极循环曲线法101.6
6、本课题的意义及主要研究内容111.6.1本课题的意义111.6.2本课题主要研究内容11第二章 试验过程122.1试验方案(流程图)122.2真空冶炼及试验方法122.2.1冶炼工艺122.2.2化学成分分析132.3试样切取及制备132.3.1取样位置及尺寸132.3.2试样的制备142.4组织形貌及微区分析142.4.1金相分析142.4.2 SEM(扫描电镜)分析142.4.3 EDS(能谱仪)分析152.5腐蚀试验方法及装置152.5.1 FeCl3浸泡腐蚀试验方法152.5.2循环阳极曲线法162.6腐蚀形貌观察16第三章 试验数据分析173.1浸泡腐蚀173.1.1宏观腐蚀形貌分析
7、173.1.2试验数据分析173.2电化学腐蚀183.2.1极化曲线法183.2.2循环阳极曲线法213.3组织的变化对点蚀的影响23第四章 实验结论25参考文献26外文翻译27致谢39第一章 文献综述1.1铁素体不锈钢相图、铸态组织及性能特点1.1.1 Fe-Cr二元相图及1Cr17铁素体不锈钢铸态组织特征图1.1铁铬二元相图铁素体型不锈钢是含铬量W(Cr)=10.5%30%、含碳量W(C)0.20%、组织以铁素体为主的铁铬合金。在Fe-Cr二元合金中(见图1-1),当铬含量超过12%时,奥氏体完全消失。也就是说,在铬含量超过12%后,合金将不会发生-相变,因而也不会发生晶粒细化和强硬度的变
8、化。在整个合金范围内,铁素体都直接从液态中结晶出来。当铬含量较高时,脆硬的相在约820从铁素体中开始析出。相是wCr45%的Fe-Cr金属间化合物,会使金属发生脆化。由于相是在晶界析出,消耗了大量的铬,使耐腐蚀性下降。载低于600时()铁素体偏析形成低铬的铁素体和高铬的铁素体,这就是不锈钢的475脆性。1.1.2铁素体不锈钢性能特点在各类不锈钢中,铁素体型不锈钢具有良好的强度及冷成形性能,但在室温及低温下的韧性差,塑-脆性转变温度高,并有缺口敏感性,与奥氏体型不锈钢相比,其高温强度不良;在低温和大截面尺寸条件下,其韧性较低。铁素体型不锈钢的组织结构为体心立方晶体,有磁性。这类钢既不能通过热处理
9、进行强化,也不能通过冷加工进行强化。钢的热导率最高、线胀系数较小,导热性和膨胀特性与普通碳钢类似,耐蚀性随钢中含铬量的增加而提高。1.2硼元素在钢中的作用1.2.1硼在钢中的存在形式根据晶体学的尺寸因数判断,如果溶质对溶剂原子半径的比率小于0.59,形成间隙固溶体;若半径的比率在0.85和1.15之间,通常形成置换固溶体。通过计算可知,硼与-Fe,-Fe铁原子的半径比率在间隙和置换两个极限值之间,仅此判断硼在铁和钢中即可形成间隙式固溶体又可形成置换式固溶体。根据x射线结构分析和最近的扩散数据以及滞弹性研究结果综合分析推断,硼在-Fe形成置换式固溶体,在-Fe中形成间隙和置换两种形式的固溶体。硼
10、在钢中的存在形态可分为酸不溶硼和酸溶硼两类。前者包括氧化硼、氮化硼中的硼,不具有提高淬透 性的作用;后者包括具有提高淬透性作用的固溶硼和 铁、碳化合物(如Fe3(C、B)、Fe23(C、B)6) 中的硼。在热处理过程中这两种硼可相互转化。对50B钢的研究指出,在退火状态的50B钢中,硼存在于固镕体(铁素体)和碳硼化物Fe3(C,B)及Fe23(B,C)6之中。对于经过特殊等温处理并经淬火(具有马氏体和析出相)的50B钢,硼存在于固镕体(马氏体)和碳硼化物Fe23(B,C)6之中。当然,并不排除征夹杂物中有硼的可能性,例如在实际生产中,硼的氮化物及氧化物的形成,也是难以避免的。对于高合金钢中硼的
11、存在形式,目前也有不少的研究。已经确定,随钢中硼含量不同,硼将在不同成份的析出物中出现。主要是M 23(B,C)6 、V4(C,B)3。M3B2及M2B等类型析出物。尽管对不同类型的硼钢来说,硼会出现在不同类型的析出物之中,但是硼在固溶体里存在形式和在奥氏体晶界上的吸附效应,不论在低合金钢还是高合金钢中都没有本质的区别。1.2.2硼对钢组织的影响1.2.2.1硼对钢相变的影响硼对钢的相变的影响主要在于影响相变的孕育期,即“C”曲线中,恒温下开始转变前的时间,孕育期的物理本质是新相形核的难易程度。微量的硼( 0.002%) 在奥氏体晶界上有偏聚作用,可有效地抑制先析铁素体析出。钢中加入硼后,由于
12、硼是偏聚倾向较大的元素,能偏聚于晶界,降低了碳原子在晶界上的偏聚浓度,有效地抑制了先共析铁素体的析出,并对贝氏体转变推迟较少,从而形成自己独特的“C”曲线形状。1.2.2.2硼强化晶界的机理硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低。硼减缓了合金元素沿晶界的扩散过程。硼能抑制晶界片层状、胞状析出相以及改善碳化物不均匀分布的状态,改善了晶界状态。1.2.2.3硼对晶粒尺寸的影响在低碳钢中随硼的质量分数增加,奥氏体晶粒尺寸明显增大。由于钢中B与N形成BN,减少了AlN的生成数量,在升温过程中,BN先溶解于奥氏体,而AlN数量很少,所以奥氏体晶粒长大不受阻碍。提高奥氏体化温度,B
13、对奥氏体晶粒长大的作用会更加明显。在600900范围内,Fe23(B,C)6会在晶界析出,如奥氏体化温度较低时,Fe23(B,C)6没有完全溶解于奥氏体,残留的非连续的Fe23(B,C)6会阻碍晶粒长大;当提高奥氏体化温度时,Fe23(B,C)6会完全溶解,消除了其阻碍作用,使得晶粒迅速长大。为了保证B元素的有利作用,减少有害作用,须添加合金元素Ti来固定杂质元素O、N,从而使B处于固溶态,并偏聚于晶界以发挥其长处;并且形成的TiN、TiO能有效的起到细化晶粒的作用;同时Ti能抑制加热时奥氏体晶粒的长大,并且微量的Ti也有利于改善焊接热影响区的韧性。单位体积内晶粒的平均数量用Z表示,则在均匀条
14、件下形核和成长时,Z与N和G的关系为:Z=K(N/G)3/4,其中K为比例常数,约为0.9。因此,在结晶过程中凡是减小N而增大G,即:使N/G减小的方法,都可以使晶粒变粗大。硼钢中固溶硼在降温过程中能够在奥氏体晶界偏聚,降低了晶界能,可以阻碍先共析铁素体在奥氏体晶界形核,因而在奥氏体向铁素体转变时,形核率N降低;而且,硼对晶粒的长大速度没有影响,则平均长大速度G不变,从而使N/G变小,晶粒数Z小,平均晶粒尺寸大。1.2.3硼对钢性能的影响1.2.3.1硼对钢淬透性的影响 硼对增加钢的淬透性有重要意义,在钢中加入主0.0020.003的硼所达到的增加淬透性的作用,相当于加入0.5的Mn、Cr或M
15、o。硼对淬透性的贡献,主要在于硼在奥氏体晶界的偏聚,是奥氏体分解的新相在奥氏体晶界处形核困难,从而造成奥氏体分解的孕育期增长,使淬透性提高。根据相变理论,珠光体转变属于扩散型转变,新相的形核一般首先在母相奥氏体的晶界处形成,这是因为晶界处最容易满足三大起伏条件,即能量起伏、成分起伏和结构起伏。如果破坏了其中某些条件,都有可能使形核发生困难,从而造成奥氏体分解的孕育期增长。 1.2.3.2硼对钢淬硬性的影响微量硼能够明显提高不锈钢的淬硬性,主要与不锈钢的化学成分和夹杂物元素如氧、氮有关。钢的化学成分一定时,淬硬性随着淬火温度的变化具有一个峰值特征。微量的硼能够明显地提高不锈钢的淬硬性,随冷却速度
16、的加大,硬度逐渐提高。1.2.3.3硼对钢生产工艺的影响硼钢的生产工艺具有一系列特点,必须对冶炼、加工及热处理工艺给予注意,才能保证使硼钢获得理想的组织和性能。1.冶炼 由于硼的化学性质极为活泼,很容易与钢中的氧、氮结合,使硼失去作用,而且钢中的硼含量又极少,所以在硼钢的冶炼中如何保证稳定地获得适量的酸溶硼而且均匀地分布在钢中是非常重要的。硼钢可以用电炉、转炉冶炼。为了保护硼,在加硼前应先行加入与氧、氮结合力比硼更强的铝、钛、锆等,即先加铝脱氧,再加钛等定氮,最后向炉中或钢包中加入硼,这就是所谓的经典法。也可将含有硼和铝、钛、锆、锰、硅等多种保护元素的复合硼铁合金一次加入。常用的一种复合合金的
17、成分(质量分数)是:20钛、13铝、4锆、8锰、5硅、0.5硼,余为Fe。但是用钛定氮保护硼形成的TiN也很容易使钢的韧性、疲劳性能甚至机加工性能变坏。而且TiN很稳定,一旦形成就几乎不再变化,难以进一步起到平衡、稳定酸溶硼含量的作用,所以日本的土生隆一、法国Urgine厂都研究了只用铝不用钛的保硼冶炼方法,实际应用效果很好。2.压力加工 硼钢以微量硼代替大量其他合金元素,故与淬透性相同的其他合金钢相比合金含量大大降低,在高温时的变形抗力减小,容易塑性变形,其氧化皮也较松散、易脱落,所以硼钢易于锻、轧热加工,对加工设备、工具的磨损、破坏也较小。但是硼钢的热加工工艺仍有认真选择和控制的必要。比如
18、加热温度不宜过高,加热时间尽量缩短,以尽量减少脱硼,同时也是为了减小晶界硼相的析出浓度。在较低温度下变形,对硼钢获得较高淬透性和较小晶粒度是有帮助的。另外热加工变形量对硼钢冲击韧性有较大影响,变形程度越高,硼在钢中的分布越均匀,晶界硼相的链状分布容易被破坏,对钢的性能越有好处。3.热处理 硼钢最适宜在淬火、回火后使用,而且必须淬透,否则不但不能发挥硼提高淬透性的作用,而且还因硼使未淬透的钢材心部产生针状铁素体而恶化力学性能、所以硼钢的热处理亦是十分重要的。淬火前最好预先正火以得到尽可能多的固溶硼。淬火温度不宜过高,冷却速度要足够大,以尽量减少硼冶金金属相的数量和粒度。多量和大尺寸的硼相会降低硼
19、钢的韧性,即所谓的“硼脆”。硼对钢的抗回火软化能力无影响。与淬透性相当的其他合金钢相比,硼钢的抗回火软化能力较低,故为获得相同的强度,硼钢的回火温度应适当降低(与铬钼钢相比,可低2050),回火时间也要短些。另外,硼还使回火脆化倾向略有增加,对此也应注意。硼钢属于细晶粒钢,如果热加工制度选择适当,亦可以利用锻后余热直接淬火,不会因晶粒粗化而出现问题。硼不降低马氏体转变开始温度(Ms点),故相当于低碳低合金钢的硼钢的怄比淬透性相当的铬钼钢高很多,淬火中首批形成的马氏体在随后的冷却过程中即被回火。所以一些硼钢淬火后并非必须回火,特别是碳含量低于0.25的硼钢。这样就大大简化了热处理工艺。只要硼钢钢
20、材能被淬透,回火后即可得到较好的综合力学性能,而且在整个截面上比较均匀。这是因为淬火得到完全马氏体组织,回火马氏体保证钢有良好的强度和韧性。另外,硼能强烈抑制铁素体转变,因而可极大地提高贝氏体的淬透性,某些情况下可经空冷得到完全贝氏体组织。4.切削加工及焊接 硼钢经正火或退火后硬度较低,切削加工性能也较好。焊接性也因硼钢的碳当量比淬透性相当的其他合金钢低而有明显改善。1.2.3.4硼对钢耐蚀性能的影响高铬铁素体不锈钢(Cr17Mo2Ti)中加0.005%的硼,可使钢在沸腾的65%醋酸中的耐腐蚀性能提高;奥氏体不锈钢中加入微量(0.00060.0007%)的硼,可使钢的热态塑性改善;硼对提高钢的
21、热强性有良好的作用,可使不锈钢的热强性显著提高;含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途。1.3不锈钢点蚀机理和影响因素1.3.1点蚀机理在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀) 。点蚀一般在静止的介质中容易发生。具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。图1-2各种点腐蚀形貌 图1-3不锈钢在氯离子介质中的点蚀示意图在含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上
22、,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20m30m 小蚀坑,这些小蚀坑便是孔蚀核。在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。蚀孔内的金属表面处于活化状态,电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态-钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状
23、态。孔内主要发生阳极溶解,Fe Fe2+ + 2e ,Cr Cr3+ + 3e ,Ni Ni2+ + 2e;介质呈中性或弱碱性时,孔外的主要反应为,O2 + H2O + 2e 2OH-。由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩散,溶解氧也不易扩散进来。由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶液,这种浓溶液可使孔内金属表面继续维持活化状态。又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 含硼铸态铁素体不锈钢1Cr17的点蚀行为研究 毕业论文 含硼铸态铁素体 不锈钢 Cr17 行为 研究
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3937208.html