代理控制交通灯毕业论文外文翻译.doc
《代理控制交通灯毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《代理控制交通灯毕业论文外文翻译.doc(10页珍藏版)》请在三一办公上搜索。
1、Agent controlled traffic lightsIntroductionThe quality of (urban) traffic control systems is determined by the match between the control schema and the actual traffic patterns. If traffic patterns change, what they usually do, the effectiveness is determined by the way in which the system adapts to
2、these changes. When this ability to adapt becomes an integral part of the traffic control unit it can react better to changes in traffic conditions. Adjusting a traffic control unit is a costly and timely affair if it involves human attention. The hypothesis is that it might offer additional benefit
3、 using self-evaluating and self-adjusting traffic control systems. There is already a market for an urban traffic control system that is able to react if the environment changes;the so called adaptive systems. Real adaptive systems will need pro-active calculated traffic information and cycle plans-
4、 based on these calculated traffic conditions- to be updated frequently.Adaptive urban traffic control Adaptive signal control systems must have a capability to optimise the traffic flow by adjusting the traffic signals based on current traffic. All used traffic signal control methods are based on f
5、eed-back algorithms using traffic demand data -varying from years to a couple of minutes - in the past. Current adaptive systems often operate on the basis of adaptive green phases and flexible co-ordination in (sub)networks based on measured traffic conditions (e.g., UTOPIA-spot,SCOOT). These metho
6、ds are still not optimal where traffic demand changes rapidly within a short time interval. The basic premise is that existing signal plan generation tools make rational decisions about signal plans under varying conditions; but almost none of the current available tools behave pro-actively or have
7、meta-rules that may change behaviour of the controller incorporated into the system. The next logical step for traffic control is the inclusion of these meta-rules and pro active and goal-oriented behaviour. The key aspects of improved control, for which contributions from artificial intelligence an
8、d artificial intelligent agents can be expected, include the capability of dealing with conflicting objectives; the capability of making pro-active decisions on the basis of temporal analysis; the ability of managing, learning, self adjusting and responding to non-recurrent and unexpected events (Am
9、brosino et al., 1994).What are intelligent agents Agent technology is a new concept within the artificial intelligence (AI). The agent paradigm in AI is based upon the notion of reactive, autonomous, internally-motivated entities that inhabit dynamic, not necessarily fully predictable environments (
10、Weiss, 1999). Autonomy is the ability to function as an independent unit over an extended period of time, performing a variety of actions necessary to achieve pre-designated objectives while responding to stimuli produced by integrally contained sensors (Ziegler, 1990). Multi-Agent Systems can be ch
11、aracterised by the interaction of many agents trying to solve a variety of problems in a co-operative fashion. Besides AI, intelligent agents should have some additional attributes to solve problems by itself in real-time; understand information; have goals and intentions; draw distinctions between
12、situations; generalise; synthesise new concepts and / or ideas; model the world they operate in and plan and predict consequences of actions and evaluate alternatives. The problem solving component of an intelligent agent can be a rule-based system but can also be a neural network or a fuzzy expert
13、system. It may be obvious that finding a feasible solution is a necessity for an agent. Often local optima in decentralised systems, are not the global optimum. This problem is not easily solved. The solution has to be found by tailoring the interaction mechanism or to have a supervising agent co-or
14、dinating the optimisation process of the other agents.Intelligent agents in UTC,a helpful paradigmAgent technology is applicable in different fields within UTC. The ones most important mentioning are: information agents, agents for traffic simulation and traffic control. Currently, most applications
15、 of intelligent agents are information agents. They collect information via a network. With special designed agents user specific information can be provided. In urban traffic these intelligent agents are useable in delivering information about weather, traffic jams, public transport, route closures
16、, best routes, etc. to the user via a Personal Travel Assistant. Agent technology can also be used for aggregating data for further distribution. Agents and multi agent systems are capable of simulating complex systems for traffic simulation. These systems often use one agent for every traffic parti
17、cipant (in a similar way as object oriented programs often use objects). The application of agents in (Urban) Traffic Control is the one that has our prime interest. Here we ultimately want to use agents for pro-active traffic light control with on-line optimisation. Signal plans then will be determ
18、ined based on predicted and measured detector data and will be tuned with adjoining agents. The most promising aspects of agent technology, the flexibility and pro-active behaviour, give UTC the possibility of better anticipation of traffic. Current UTC is not that flexible, it is unable to adjust i
19、tself if situations change and cant handle un-programmed situations. Agent technology can also be implemented on several different control layers. This gives the advantage of being close to current UTC while leaving considerable freedom at the lower (intersection) level.Assumptions and consideration
20、s on agent based urban traffic controlThere are three aspects where agent based traffic control and -management can improve current state of the art UTC systems:- Adaptability. Intelligent agents are able to adapt its behaviour and can learn from earlier situations.- Communication. Communication mak
21、es it possible for agents to co-operate and tune signal plans.- Pro-active behaviour. Due to the pro active behaviour traffic control systems are able to plan ahead.To be acceptable as replacement unit for current traffic control units, the system should perform the same or better than current syste
22、ms. The agent based UTC will require on-line and pro-active reaction on changing traffic patterns. An agent based UTC should be demand responsive as well as adaptive during all stages and times. New methods for traffic control and traffic prediction should be developed as current ones do not suffice
23、 and cannot be used in agent technology. The adaptability can also be divided in several different time scales where the system may need to handle in a different way (Rogier, 1999):- gradual changes due to changing traffic volumes over a longer period of time,- abrupt changes due to changing traffic
24、 volumes over a longer period of time,- abrupt, temporal, changes due to changing traffic volumes over a short period of time,- abrupt, temporal, changes due to prioritised traffic over a short period of timeOne way of handling the balance between performance and complexity is the use of a hierarchi
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代理控制交通灯 毕业论文外文翻译 代理 控制 交通灯 毕业论文 外文 翻译

链接地址:https://www.31ppt.com/p-3934678.html