交通信号智能控制系统外文文献及翻译(适用于毕业论文外文翻译+中英文对照) .doc
《交通信号智能控制系统外文文献及翻译(适用于毕业论文外文翻译+中英文对照) .doc》由会员分享,可在线阅读,更多相关《交通信号智能控制系统外文文献及翻译(适用于毕业论文外文翻译+中英文对照) .doc(12页珍藏版)》请在三一办公上搜索。
1、Agent controlled traffic lightsAuthor:Danko A. Roozemond,Jan L.H. Rogier Provenance:Delft University of TechnologyIntroductionThe quality of (urban) traffic control systems is determined by the match between the control schema and the actual traffic patterns. If traffic patterns change, what they us
2、ually do, the effectiveness is determined by the way in which the system adapts to these changes. When this ability to adapt becomes an integral part of the traffic control unit it can react better to changes in traffic conditions. Adjusting a traffic control unit is a costly and timely affair if it
3、 involves human attention. The hypothesis is that it might offer additional benefit using self-evaluating and self-adjusting traffic control systems. There is already a market for an urban traffic control system that is able to react if the environment changes;the so called adaptive systems. Real ad
4、aptive systems will need pro-active calculated traffic information and cycle plans- based on these calculated traffic conditions- to be updated frequently.Our research of the usability of agent technology within traffic control can be split into two parts. First there is a theoretical part integrati
5、ng agent technology and traffic control. The final stage of this research focuses on practical issues like implementation and performance. Here we present the concepts of agent technology applied to dynamic traffic control. Currently we are designing a layered model of an agent based urban traffic c
6、ontrol system. We will elaborate on that in the last chapters.Adaptive urban traffic control Adaptive signal control systems must have a capability to optimise the traffic flow by adjusting the traffic signals based on current traffic. All used traffic signal control methods are based on feed-back a
7、lgorithms using traffic demand data -varying from years to a couple of minutes - in the past. Current adaptive systems often operate on the basis of adaptive green phases and flexible co-ordination in (sub)networks based on measured traffic conditions (e.g., UTOPIA-spot,SCOOT). These methods are sti
8、ll not optimal where traffic demand changes rapidly within a short time interval. The basic premise is that existing signal plan generation tools make rational decisions about signal plans under varying conditions; but almost none of the current available tools behave pro-actively or have meta-rules
9、 that may change behaviour of the controller incorporated into the system. The next logical step for traffic control is the inclusion of these meta-rules and pro active and goal-oriented behaviour. The key aspects of improved control, for which contributions from artificial intelligence and artifici
10、al intelligent agents can be expected, include the capability of dealing with conflicting objectives; the capability of making pro-active decisions on the basis of temporal analysis; the ability of managing, learning, self adjusting and responding to non-recurrent and unexpected events (Ambrosino et
11、 al., 1994).What are intelligent agents Agent technology is a new concept within the artificial intelligence (AI). The agent paradigm in AI is based upon the notion of reactive, autonomous, internally-motivated entities that inhabit dynamic, not necessarily fully predictable environments (Weiss, 199
12、9). Autonomy is the ability to function as an independent unit over an extended period of time, performing a variety of actions necessary to achieve pre-designated objectives while responding to stimuli produced by integrally contained sensors (Ziegler, 1990). Multi-Agent Systems can be characterise
13、d by the interaction of many agents trying to solve a variety of problems in a co-operative fashion. Besides AI, intelligent agents should have some additional attributes to solve problems by itself in real-time; understand information; have goals and intentions; draw distinctions between situations
14、; generalise; synthesise new concepts and / or ideas; model the world they operate in and plan and predict consequences of actions and evaluate alternatives. The problem solving component of an intelligent agent can be a rule-based system but can also be a neural network or a fuzzy expert system. It
15、 may be obvious that finding a feasible solution is a necessity for an agent. Often local optima in decentralised systems, are not the global optimum. This problem is not easily solved. The solution has to be found by tailoring the interaction mechanism or to have a supervising agent co-ordinating t
16、he optimisation process of the other agents.Intelligent agents in UTC,a helpful paradigmAgent technology is applicable in different fields within UTC. The ones most important mentioning are: information agents, agents for traffic simulation and traffic control. Currently, most applications of intell
17、igent agents are information agents. They collect information via a network. With special designed agents user specific information can be provided. In urban traffic these intelligent agents are useable in delivering information about weather, traffic jams, public transport, route closures, best rou
18、tes, etc. to the user via a Personal Travel Assistant. Agent technology can also be used for aggregating data for further distribution. Agents and multi agent systems are capable of simulating complex systems for traffic simulation. These systems often use one agent for every traffic participant (in
19、 a similar way as object oriented programs often use objects). The application of agents in (Urban) Traffic Control is the one that has our prime interest. Here we ultimately want to use agents for pro-active traffic light control with on-line optimisation. Signal plans then will be determined based
20、 on predicted and measured detector data and will be tuned with adjoining agents. The most promising aspects of agent technology, the flexibility and pro-active behaviour, give UTC the possibility of better anticipation of traffic. Current UTC is not that flexible, it is unable to adjust itself if s
21、ituations change and cant handle un-programmed situations. Agent technology can also be implemented on several different control layers. This gives the advantage of being close to current UTC while leaving considerable freedom at the lower (intersection) level.Designing agent based urban traffic con
22、trol systemsThe ideal system that we strive for is a traffic control system that is based on actuated traffic controllers and is able to pro actively handle traffic situations and handling the different, sometimes conflicting, aims of traffic controllers. The proposed use of the concept of agents in
23、 this research is experimental.Assumptions and considerations on agent based urban traffic controlThere are three aspects where agent based traffic control and -management can improve current state of the art UTC systems:- Adaptability. Intelligent agents are able to adapt its behaviour and can lear
24、n from earlier situations.- Communication. Communication makes it possible for agents to co-operate and tune signal plans.- Pro-active behaviour. Due to the pro active behaviour traffic control systems are able to plan ahead.To be acceptable as replacement unit for current traffic control units, the
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 交通信号智能控制系统外文文献及翻译适用于毕业论文外文翻译+中英文对照 交通信号 智能 控制系统 外文 文献 翻译 适用于 毕业论文 中英文 对照
链接地址:https://www.31ppt.com/p-3934299.html