一种分段曲线拟合方法研究毕业论文.doc
《一种分段曲线拟合方法研究毕业论文.doc》由会员分享,可在线阅读,更多相关《一种分段曲线拟合方法研究毕业论文.doc(19页珍藏版)》请在三一办公上搜索。
1、一种分段曲线拟合方法研究摘 要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好.关键词:分段曲线拟合 Hermite插值 分段点 连续Study on A Method of Sub-Curve FittingAbstract:Sub-curve fitting is a commonly used proce
2、ssing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of two points cubic
3、 Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective.Key words: sub-curve fitting Hermite interpolation sub-poi
4、nt continuous前 言 数据拟合是一种重要的数据处理方法,其中最常用的是多项式曲线拟合.然而当数据点较多时,多项式阶数太低,拟合精度和效果不太理想,要提高拟合精度和效果就需要提高曲线阶数,但阶数太高又带来计算上的复杂性及其他方面的不利.因此,如果只采用一种多项式曲线函数拟合较多的数据点,难以取得较好的拟合精度和效果.为有效地解决上述问题,一般采用分段曲线拟合.以往的分段曲线拟合方法主要是针对在自然科学领域中测量的数据而使用的拟合方法,这些数据的变化一般都遵循一定的规律.因此,在对这些测量数据拟合时,传统的分段曲线拟合方法一般是先根据主观经验对数据分段, 然后进行拟合.但是对于有些实际
5、问题的数据,比如社会、经济生活中的大量统计数据,这些数据变化的机理一般非常复杂,往往不像物理定律那样有着严格的规律,所以变化的不确定性很强.因此,传统的分段曲线拟合根据主观经验对数据进行分段的做法就显现出明显地不足.针对这种不足,国内外许多文献也讨论过,文献1研究的是最小二乘法在曲线拟合中的实现,给出了最小二乘法在多元正交基函数拟合中的计算机实现方法,以常见的二次曲线拟合为例说明了程序编制的要点,在实验的数据处理中具有实用价值;文献2讨论分段最小二乘曲线拟合方法,本文在一般最小二乘的基础上提出分段最小二乘曲线拟合的方案,讨论了连接分段拟合曲线的方法,并且给出分段最小二乘多项式拟合的计算方法;文
6、献4主要介绍基于最小二乘原理的分段曲线拟合法,在最小二乘的基础上,运用实测数据点的分段曲线拟合法,探讨相应的模型以及用不同类型的曲线拟合同时拟合数据点的具体应用,对一实例,应用MATLAB编程设计,完成模型的求解、显著性检验等,可以得到拟合精度比较高的拟合曲线,该方法原理简便,其模型易用MATLAB编程求解;文献5研究的是基于最小二乘法的分段三次曲线拟合方法研究,多项式曲线拟合是一种较常用的数据处理方法,但当数据点较多时,只采用一种多项式曲线函数拟合所有数据点难以得到较好的拟合效果,针对传统分段曲线拟合方法中对数据点分段时经验成分较多的不足,提出了一种基于最小二乘法原理的分段三次曲线拟合方法,
7、建立三次拟合曲线方程,通过实际数据的检验,验证了该方法的拟合效果;文献6,7,8主要研究基于分段三次曲线拟合的广州周发案量预测,随着城市化进程的不断加快,城市人口不断增多,广州市未来治安形势预警,支持政府部门和政法部门关于治安工作的决策,首先需要对未来时期的发案量做出比较精确的预测,由于目前广州市方案量统计数据比较少,且发案量受农历春节影响较明显,针对传统时间序列预测方法在此情况下应用不足,提出了基于分段三次曲线拟合的周发案量预测模型,并给出了具体的建模、计算步骤,最后通过实际数据的检验,证明了方法预测效果较好;文献9提出了分段函数的光滑方法及其在曲线拟合中的应用,在分析复杂实验数据时,采用分
8、段曲线拟合方法,利用此方法在段内可以实现最佳逼近,但在段边界上却可能不满足连续性与可导性.为了克服这种现象,本文主要研究一种能使段边界连续的方法,具有一定的理论和实际意义.在前人的基础上,本文总结分段曲线拟合的方法与步骤,介绍了分段三次曲线的拟合方法和两点三次Hermite插值,然后讨论如何利用Hermite插值方法使得分段拟合曲线在连接点处满足连续方法,最后通过一些实例应用,表明本文所介绍的方法具有一定的应用价值.1 最小二乘曲线拟合1.1 最小二乘法1 令待求的未知量为,它们可由个直接测量通过下列函数关系求得:若为真值,由上述已知函数求出真值,若其测量值为,则对应的误差为.最小二乘法可定量
9、表示为: (1.1.1)对不等精度的测量,应加上各测量值的权重因子,即: (1.1.2)最小二乘法是在随机误差为正态分布时,由最大似然法推出的这个结论.它可使测量误差的平方和最小,因此被视为从一组测量值中求出一组未知量的最可信赖的方法.1.2 最小二乘多项式曲线拟合的基本原理21.2.1 线性拟合原理 将拟合函数取线性函数是一种简单的数据拟合方法,将数据点确定线性拟合函数 (1.2.1.1)称为对数据的线性拟合。对于线性拟合问题,需要求函数 (1.2.1.2)的最小值点,该问题的几何背景是寻求一条直线,使该直线与数据表所确定的平面散点的纵向距离的平方和最小,如图1.2.1-1所示.0xy(图1
10、.2.1-1)由函数对两个变量求导得: (1.2.1.3) (1.2.1.4)其余等于零,得正规方程组 (1.2.1.5)也可将其矩阵形式写出来即:解得的值,将其代入(1.2.1.1)即可得到拟合线性函数.1.2.2 多项式拟合原理 为了确定数据拟合问题,选用幂函数作为函数类,则 (1.2.2.1)这就是多项式拟合函数.为了确定拟合函数的系数,需要求解正规方程组 (1.2.2.2)也可以用矩阵形式表示为 解得即可,将其代入(1.2.2.1)即可得到拟合多项式.2 分段曲线拟合2.1 分段曲线拟合的基本原理3 先根据实测数据分布的特点,确定分段数目以及相应拟合曲线类型.拟合函数一般可选为多项式函
11、数,因为在一定范围内,连续函数可用多项式任意逼近,然后再应用最小二乘法原理求得各分段拟合方程的系数.基本步骤为:第一步:将数据点分段,确定基函数,第二步:根据题目要求,建立正规方程组,第三步:解正规方程组,求出待定系数,第四步:写出拟合函数.下面以分段线性拟合与分段三次曲线拟合为例讨论分段拟合的基本过程.2.1.1 分段线性拟合我们把给出的数据点分成组,即其中为每组数据的个数.首先考虑线性拟合这种简单的情形,对组数据点分别应用最小二乘线性拟合,得到各组数据点所对应的近似线性函数, 而在整个考虑的拟合区间上就得到了条直线段,现在就这条直线段所在各区间的左端点定义,该函数就成为整个区间上的数据拟合
12、函数.这就是分段最小二乘线性拟合问题.然而有些数据组并不是每段都呈线性关系,如数据,根据其散点图却发现其前个点较接近直线,后个点呈现非线性关系,则可分两段拟合.分别以一次多项式和次多项式进行拟合,即 (2.1.1.1)为了说明具体的方法,不妨选的阶数为2,即 (2.1.1.2)要保证在边界点连续光滑,所以存在两个约束条件和,因此,式(2.1.1.1)和(2.1.1.2)的系数是相关的.解得,故式(2.1.1.1)为令为最小二乘估计量,则通过模型;,可求得最小方差的的值,从而确定出式(2.1.1.1)与(2.1.1.2)中的回归系数.最后,通过和检验值,对回归方程进行显著性检验,式中; ;. 当
13、然,根据不同的数据,可分三段进行拟合,或根据不同的数据特点,采用多次曲线拟合方式.2.1.2 分段三次曲线拟合4,5设有个数据.因为四个数据点可确定一条三次曲线,但在选取分段点时,必须考虑分段后相邻曲线必须连续,即边界点连续,因此用五个数据点拟合一条三次曲线.拟合方法:首先对数据进行一定的分段,将第一到第五数据分为第一段,再将第五到第九个数据分为第二段,将第九到第十三个数据分为第三段,依次类推进行分组,即前一段末尾的数据为下一段数据的首位,这样便保证了数据分段的连续性.然后再对个分段数据进行三次曲线拟合即可.令某段数据的三次拟合曲线函数为:可以将此曲线函数分解为奇偶两个函数:奇函数和偶函数.下
14、面应用最小二乘法的基本原理求三次拟合曲线的系数6,由于在每段数据中第一点和最后一点均两次参与拟合,因此,在求一段曲线的拟合方差时需要加权.按照平均分配的原则7,求方差的权值,得到该段曲线拟合的方差 (2.1.2.1)曲线表示为奇偶函数的形式如下 (2.1.2.2)由(2.1.2.2)可以推导出下式 (2.1.2.3)令则 (2.1.2.4)因此拟合方差为 (2.1.2.5)即对的平滑可以看作是奇函数和偶函数分别平滑的叠加.从(2.1.2.5)式中可知奇函数拟合的方差. (2.1.2.6)令,解出.因此,即奇函数的拟合方差为0,达到最佳逼近.同样,从(2.1.2.5)式中可知偶函数拟合方差为 (
15、2.1.2.7)由(2.1.2.3)式得知在边界点上.考虑到边界点连续这一约束条件,令 (2.3.2.8)因此由式(2.3.2.7)可令 (2.1.2.9)解令,有,得 (2.1.2.10)从(2.1.2.10)式可知三次曲线函数的系数的取值与边界点值有关,将(2.1.2.10)式代入(2.1.2.9)式中可得 .所以得出,再令,有,解得 . (2.1.2.11)联立式(2.1.2.8)、式(2.1.2.10)、式(2.1.2.11),解得最后得到三次拟合曲线表达式为.3 基于两点三次Hermite插值的分段曲线拟合3.1 插值的定义定义3.1.19 设函数在区间上有定义,且已知在点处的函数值
16、,若存在次多项式 (3.1.1)使得 (3.1.2)成立,则称为的插值多项式,为插值结点,为插值函数.3.2 Hermite插值方法 Hermite插值方法可以处理插值条件中合导数值的插值问题,即知道插值结点处的函数值以及导数值,求插值多项式的插值问题.3.2.1 三次Hermite插值考虑两个插值结点的情形,设,函数且已知,在区间上求三次插值函数 (3.2.1.1)使其满足插值条件 . (3.2.1.2)定理3.2.1.19 满足插值条件(3.2.1.2)的三次Hermite插值多项式是存在且唯一的.证明:由插值条件得线性方程组 (3.2.1.3)考虑系数矩阵行列式,利用行列式的拉普拉斯展开
17、定理,可得 (3.2.1.4) 故系数矩阵非奇异,线性方程组(3.1.2.3)有唯一解,从而三次多项式存在且唯一.例1 求满足插值条件的三次插值多项式,以及满足插值条件的三次插值多项式.解:由于是三次多项式的二重零点,故可设由插值条件得,求解得代入整理得现求,由于是三次多项式的二重零点,是一重零点,故可设由插值条件得求解得所以注:例题中的两个特殊的插值函数实际上是两点Hermite插值的基函数.定理3.2.1.29 两点Hermite插值函数可以用基函数的方法表示为, (3.2.1.5)其中注:定理3.2.1.2中的为Hermite插值基函数,其中;例2 给定,求Hermite插值多项式.解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一种分段曲线拟合方法研究 毕业论文 一种 分段 曲线拟合 方法 研究

链接地址:https://www.31ppt.com/p-3933404.html