[毕业设计精品]基于单片机的电热炉温度控制系统设计.doc
《[毕业设计精品]基于单片机的电热炉温度控制系统设计.doc》由会员分享,可在线阅读,更多相关《[毕业设计精品]基于单片机的电热炉温度控制系统设计.doc(29页珍藏版)》请在三一办公上搜索。
1、1 绪论 单片机具有体积小、可靠性高、功能强、使用方便、性能价格比高等特点。国际上从1970年开始,国内自1980年以来,单片机已广泛应用于国民经济的各个领域,对各个行业的技术改造和产品的更新换代起重要的推动作用。 温度是工业生产和科学实验中一个非常重要的参数。许多生产过程都是在一定的温度范围内进行的,甚至对温度的要求相当严格,因此生产现场需要测量温度和控制温度。温度是电热炉需要控制的主要参数。在传统的电热炉温度控制系统中,炉温控制多采用人工调节和温度仪表监视相结合的方式,电热炉的电源通断大多采用交流接触器来控制。这种控制方式结构简单,但控制精度差,控制速度慢,在资源方面耗费人力且本身耗能多,
2、控制器的噪音大,并且在控制温度的过程中由于接触器需要频繁接通与断开,会经常发生触点电弧放电的现象,极易造成短路,损坏接触器,对操作人员和设备带来不利影响和安全隐患。而传统的定值开关温度控制法存在温度滞后的问题,多数传统基于常规PD控制的控制装置,存在精度不高、效率低等问题。1.1 课题背景及意义随着社会的发展,温度的测量及控制已经变得越来越重要了。工业中的许多的装置的温度常常需要保持在一个既定的温度值上。传统的利用炉温控制采用温度仪表监视和人工调节相结合的方式已经不能够再满足生产的需要。并且随着科技的进步以及新产品的开发,温度的要求变得十分的重要,同时对于温度的精度方面的要求也变得越来越高了。
3、在这一背景条件下,利用单片机对温度进行采样、控制等方面的优点,可以很好的满足工艺的要求。另外,随着科技的进步,单片机的发展也十分的迅猛。因其本身固有的体积小重量轻价格便宜,功耗低,控制功能强及运算速度快等特点,所以基于单片机的温度控制系统具有非常广阔的前景。1.2 课题设计任务单片机广泛应用于现代工业控制中,采用单片机系统对温度进行控制不仅具有着控制方便、简单和灵活性大等优点,而且还可以大幅度的提高被控温度的技术指标,从而可以大大的提高产品的质量。在本课题研究中,需要深入的了解51单片机在控制领域中的发展现状以及其应用前景,提高对大学本科阶段所学专业知识的融合和运用的能力,锻炼自己独立查阅和学
4、习文献的能力,培养独立分析和解决问题的能力,通过软件的设计、程序的编写调试和硬件的制作切实锻炼自己的科研开发能力,加强自己的科技创新能力。主要任务如下:1)系统学习和查阅了各类模拟电路以及电子元器件的功能、管脚图以及工作特性等一系列参数和使用方法,学习和实践多功能数字时钟的硬件电气设计原则及印刷电路板的制作;学习和研究AT89C51单片机相关的汇编语言程序编程、外部硬件接口以及内部定时中断等功能。2)设计基于单片机的电热炉温度控制系统。3)硬件电路设计和完成相应控制软件设计。4)完成Keil+Proteus环境下的软硬件联调和仿真。1.3 当今国内外研究动向(1) 国外温度测控系统研究 国外对
5、温度控制技术研究的比较早,开始于20世纪70年代左右。先是采用模拟式的组合仪表,采集现场的信息并进行指示、记录和控制等。80年代末出现了分布式的控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展十分迅猛,一些国家在所实现自动化的基础上正向着完全自动化、无人化的方向发展。(2) 国内温度测控系统研究 我国对于温度测控技术的研究一些较晚,开始于20世纪80年代左右。我国的工程技术人员在吸收和借鉴发达国家温度测控技术的基础上,掌握了温度室内微机控制技术,不过该技术仅限于对温度的单项环境因子的控制的方面。我国的温度测控设施计算机方面的应用,总体上正在从
6、消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制单参数单回路的系统居多,目前还没有真正意义上所讲的多参数综合控制系统,与发达国家相比,我国的温度控制系统方面仍然存在着比较大的差距。我国的温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然存在着种种的问题,存在着装备配套能力差,产业化的程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。 随着科技的发展和全球化的经济日益趋于整体化,以单片机为核心的控制温度的系统必将成为单片机发展的整体趋势。在不久的未来,依靠着单片机控制温度所带来的便捷将充斥着日常生活各个方面,而且在工业化方面也将体现出单片机控制
7、温度系统所带来的益处。总之,单片机控制温度系统将会有光明的发展前景。2 总体方案论证2.1 系统方案 此系统主要包括单片机控制系统、温度采集系统、温度显示模块、温度上下限调节模块以及外部存储模块等几部分组成。如下为系统的总体框架 由系统总体框架图可知,在温度控制系统中,经过DS18B20传感器检测到的温度值送入单片机中,在单片机内部经过数据的处理信号与给定的对应的所要求的温度值进行比较,同时还可以经过按键来调节温度的实时值,产生的温度值可以与存储器中存储的温度值进行比较,根据比较的结果来控制相应的指示灯的亮与灭,从而可以方便地控制温度的变化。此外,电热炉的温度控制的性能至关重要,传统的装置通常
8、是基于常规的PID控制方案,往往会存在着精度不高以及工作效率较低的特点。特别是对于难以准确的确定其数学模型或者是具有非线性、纯滞后和时变的温度的控制过程,仅仅依靠传统的PID控制方案难以满足电热炉温度控制的高精度的要求。为了确保电热炉温度控制高性能目标的实现,可以根据其数学模型、典型的控制方案和仿真运行的结果进行分析和研究,从而可以发现模糊自适应整定的PID控制方案通过模糊规则和模糊的推理方法能够对PID控制器参数进行校正,因而具有实用和高性能的特点。3 硬件电路设计3.1 单片机系统设计 所谓的单片机系统,就是应用单片机作为核心,外围增加一些辅助的电路,能够完成一定的功能的系统。本文采用的单
9、片机为AT89C51。它是由美国ATMEL公司生产的8位Flash ROM单片机,它的突出的优点是片内的ROM是Flash ROM,易于方便地擦写,价格低廉,并且指令丰富,编译工具多,仿真环境好。另外它还具有着集成度高、系统简单、体积小、可靠性强、处理功能强、速度快等特点。并且其内部还含有8位CPU的程序存储器、256bytes的数据存储器、21个专用寄存器以及32条I/O口线等等。因此往往会被广泛的应用于各种控制的领域。如下图所示为51单片机的管脚图。 如下为单片机AT89C51的管脚相关说明:VCC:供电电压。 GND:接地标志。 P0口:P0口是作为一个8位漏级开路的双向I/O口,每脚可
10、吸收8TTL门电流。当P0口的管脚第一次写1时,就会被定义为高阻输入。P0亦能够用于外部程序数据存储器,它能够被定义为数据/地址的第八位。在FIASH的编程时,P0 口可作为原码输入口,当FIASH进行校验时,P0会输出原码,不过此时的P0的外部必须被拉高。 P1口:P1口是一个内部提供了上拉电阻的8位双向的I/O口,P1口缓冲器能够接收输出4TTL门电流。当P1口管脚写入1后,会被内部上拉为高电平,此时可用作输入,当P1口被外部下拉为低电平时,将会输出电流,这是因为内部上拉的缘故。在FLASH校验和编程时,P1口均可作为第八位地址接收。 P2口:P2口是一个内部上拉电阻的8位双向I/O口,P
11、2口缓冲器可以用于接收,此时会输出4个TTL门电流,当P2口被写“1”时,它的管脚就会被内部上拉电阻拉高,并且可以作为输入。当作为输入时,P2口的管脚会被外部拉低,此时将输出电流,这是由于内部上拉的缘故。当P2口用于外部程序存储器或者是16位的地址外部数据存储器进行存取时,此时P2口输出地址会是高八位。当在给出地址“1”时,它就会利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口就会输出其特殊功能寄存器的内容。P2口在FLASH校验和编程时接收的是高八位的地址信号和控制信号。 P3口:P3口的管脚是8个带内部上拉电阻的双向I/O口,可用于接收输出4个TTL门电流。当P3口写入“1”
12、后,它们就会被内部上拉为高电平,并可以用作输入。作为输入,因为外部下拉为低电平,P3口将会输出电流(ILL)这是由于上拉的缘故。P3口也可以作为AT89C51的一些特殊的功能口,如下表所示: 管脚备选功能 :端口引脚功能说明P3.0/RXD串行数据输入端P3.1/TXD串行数据输出端P3.2/INT0外部中断0申请信号P3.3/INT1外部中断1申请信号P3.4/T0定时/计数器T0计数输入端P3.5/T1定时/计数器T1计数输入端P3.6/WR外部数据RAM写控制信号P3.7/RD外部数据RAM读控制信号P3口同时为闪烁编程和编程校验接收一些控制信号。 RST:复位输入。当振荡器复位器件需要
13、响应时,需要保持RST脚两个机器周期的高电平时间。如下图为复位电路图: ALE/PROG:访问外部存储器时,地址锁存所允许的输出电平就会用于锁存地址的地位字节。在FLASH的编程期间,这个引脚会用于输入编程脉冲。在通常状况下,ALE端会以不变的频率周期输出正脉冲信号,这个频率将是振荡器频率的1/6。因此它也可以用作对外部输出的脉冲或者也可以用于以定时作为目的。但是应该注意到的是:每一次作为外部数据存储器时,就会跳过一个ALE脉冲。如果想要使ALE的输出禁止,可以在SFR8EH的地址端置0。此时, ALE仅会在执行到MOVX指令时,MOVC指令是ALE才将起作用。另外,该引脚会被稍稍的拉高。如果
14、微处理器在外部执行的状态ALE被禁止时,那么置位将会无效。 EA/VPP:当/EA保持低电平的状态时,那么在此期间外部的程序存储器(0000H-FFFFH),不管其是否有内部程序存储器。注意加密方式1时,/EA将会内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH的编程期间,这个引脚也可以用于施加12V的编程电源(VPP)。 /PSEN:外部程序存储器的选通信号。当外部程序存储器读取指令的时候,每个机器周期两次的/PSEN才会有效。但当在访问外部数据存储器的时侯,这两次有效的/PSEN信号将不会再出现。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 X
15、TAL2:来自反向振荡器的输出。 振荡器特性: XTAL1为反向放大器的输入,XTAL2是反向放大器的输出。该反向放大器将会配置为片内振荡器。石晶振荡和陶瓷振荡都可以采用。如果采用的是外部时钟源驱动器件,XTAL2应该不接。有余输入到内部时钟信号需要通过一个二分频的触发器,因此对外部时钟信号的脉宽将无任何的要求,但必须要满足脉冲的高低电平要求的宽度。振荡电路的接线如下图所示: 3.2 温度采集模块温度由DALLAS公司所生产的一线式数字温度传感器DS18B20采集。DS18B20的测温范围位- 55125C,测试的分辨率能够达到0.0625C,测试的温度用符号扩展位16位形式串行输出。CPU只
16、需一根端口线就可以与多个DS18b20进行通信,占用的微处理器的端口较少,进而可以节省大量的引线与逻辑电路。DS18B20的内部是一个9字节的高速存储器,存储器用来存储所设定的温度值。其中它的前两个字节是将要测得的温度数据,第一字节所存储的是温度的低八位,第二字节会是温度的高八位,第三和第四字节将是温度的上限Th与温度的下限TL的易失性拷贝,第五字节会是结构存储器的易失性拷贝,此三字节的内容在每一次的上电复位时均会被刷新,第六、七、八三个字节是用于内部的计算,而第九字节为冗余校验字节,用于保证通信的准确性。当温度转换命令发出转换命令后,经过转换的温度值将会以二字节补码的形式存放在此存储器的第一
17、和第二字节中。单片机能够通过单线接口读到数据,读数据时低位在前,高位在后,其中的高五位是符号位,中间的七位是整数位,最低四位将会是小数位。DS18B20的最大特点是单总线数据的传输方式,因而对于读写的数据位有着严格的时序要求。例如包括初始化时序、读时序、写时序。每一条命令和数据的传输都是从单片机写时序开始的,如要求DS18B20回送数据,那么在进行写命令后,单片机需要启动读时序才能够完成数据的接收。命令和数据的传输都是低位在先。如下图为DS18B20在proteus中的的实物图以及对于DS18B20的特性的介绍: DS18B20是DALLAS公司生产的1Wire,即单总线器件,具有微型化、低功
18、耗、高性能、抗干扰能力强、易配微处理器等优点,与单片机接口时仅需占用一个I/O端口,无须任何外部元件,就直接可以将环境温度转化成串行数字信号供处理器处理。其特性如下:(1)只要求一个端口即可实现通信。(2)在DS18B20中的每个器件上都会有独一无二的序列号。(3)测量的温度范围是55到125之间。(4)在实际的应用中不需要任何外部元器件即可实现测温。 (5)内部有温度上限和下限的报警设置。 (6)用户可以从9位到12位来选择数字温度计的分辨率。 (7)支持多点测温的功能,若干个DS18B20可以并联在唯一的三线上,实现组网思维多点测温。(8)电源极性接反时,芯片不会因为发热而烧毁,但不能正常
19、的工作。如果需要控制多个DS18B20进行温度采集时,只需将DS18B20的I/O口都连到一起。如下图所示。DS18B20的引脚功能为:DQ为数字信号的输入/输出端;GND为电源接地标志;VCC为外接供电电源的输入端。本设计使用单片机AT89C51的P3.4口与DS18B20的单总线端口DQ相连。DS18B20内部结构主要是由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL以及配置寄存器。DS18B20在出厂时的默认设置为12位,最高位为符号位,温度值共11位。单片机在读取数据时可以一次读取2个字节共16位,前5位为符号位,当前5位为1时,当读取的温度为负值时,读到的
20、数值要取反加1再乘以0.0625才是它的实际温度值。而当前5位为0时,读取的温度为正值,读到的数值直接乘以0.0625便是实际的温度值。根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:在每一次的读写之前都需要对DS18B20进行复位,并且在复位成功后还要发送一条ROM指令,最后再发送RAM指令,只有这样才能够对DS18B20进行预定的操作。复位成功后会要求主CPU将数据线下拉500微秒左右,然后将会释放,DS18B20在收到信号后将会等待1660微秒左右,然后将发出60240微秒的存在低脉冲,此时主CPU收到此信号才能够表示复位成功。在实际使用的中,DS18B
21、20有以下事项需要注意:在对DS18B20的读写的编写程序时,必须严格的保证读写时序,如若不然将会无法读取到测得的温度结果。 在用DS18B20进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。因为连接DS18B20的总线电缆是有长度限制的。当向DS18B20发出温度转换的指令后,程序要等待DS18B20的返回信号,假如某个DS18B20接触不好,当程序读该DS18B20时,将没有返回信号,程序会进入死循环。DS18B20与单片机的连接如下图所示:3.3 液晶显示器 液晶显示器也成为LCD,由于LCD的控制必须使用专用的驱动电路,且LCD面板的接线需要特殊的技巧,再加上LCD面板十
22、分的脆弱,因此一般不单独的使用,而是将LCD面板、驱动电路与控制电路组合成LCM模块一起使用。LCM是一种很省电的电子设备,常被应用在数字或单片机控制系统中。液晶显示器选用LM016L,它是显示两行的字符型LCD显示器,它是由32个字符点阵块组成。每个字符点阵块都是由57或510个点阵组成,并可以显示ASCII表中所有的可视字符。它的内部内置了字符产生器ROM,字符产生器RAM和显示数据RAM,CGROM的内部内置了192个常用字符的字模,且CGRAM包含了8个字节的RAM,可以用来存放用户自定义的字符,DDRAM就是用来寄存等待选择的字符的代码。LM016L字符型与单片机之间的连接主要有两种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计精品 毕业设计 精品 基于 单片机 电热炉 温度 控制系统 设计
链接地址:https://www.31ppt.com/p-3932796.html