DSP设计的一线制汽车控制器毕业设计论文.doc
《DSP设计的一线制汽车控制器毕业设计论文.doc》由会员分享,可在线阅读,更多相关《DSP设计的一线制汽车控制器毕业设计论文.doc(48页珍藏版)》请在三一办公上搜索。
1、目 录摘 要第一章 绪论 1第二章 系统硬件设计 32.1 方案论证 32.1.1 设计原理 32.1.2 论证方案 32.1.3 器件选择 42.2 主控制器的选择 52.2.1 DSP发展概述及DSP基础 52.2.2 所用芯片TMS320F240 102.2.3系统配置和中断 112.2.4 存储器介绍 122.2.5 时钟电路设计 132.2.6 复位电路设计 162.2.7 数字I/O接口 172.3 前向通道A/D 17 2.3.1 信号采集模块 172.3.2 CD4051介绍 182.3.3 TMS320F240的ADC模块 202.4 后向通道D/A 222.4.1 D/A转
2、换器DAC8562 232.4.2 运放电路 23第三章 软件设计 25 3.1 前言 25 3.2 流程图 25第四章 结束语 28参考文献附录 程序清单毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人
3、完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 第一章 绪论一线制汽车控制器是应用WZ位置码通讯技术派生出来的一套全新概念的汽车控制器。WZ位置码通讯技术是一个全新的概念,现在已取得国际专利,而一线制汽车控制器已获得国家专利。WZ位置码技术的主要特点是:包括计算机在内的所有数字元件,设备之间通讯管脚及导线只有一个,而其通讯速度
4、可以达到或接近计算机并行通讯的速度。目前,这一通讯技术的理论已完全成型,实际应用我们首选在汽车上,也就是一线制汽车控制器。应用WZ位置码通讯技术,首先开发了WZ32-0-1系统,它的特点是:1. 主频3.3K,汽车操作响应时间0.01S;2. 全车逻辑控制线只有一根,这一控制线完全实现双工特点;3. 全车没有任何过载及短路保护元器件,完全依靠线路自行控制;4. 全车不存在本系统以外的时间及逻辑控制元件;5. 全车所有主令元件由传统的符合元件变为信号元件,其通过的平均电流由安培级下降到微安级;6. 司机操作功能全部集中在方向盘上,方便了司机的操作;7. 整车成本有所下降,预计下降幅度10%-20
5、% 。 图1.1 控制器脉冲功能分布图目前,以上系统已经完成试车,在轻型车CA1046L试车25000公里,在红旗CA7221试车35000公里,情况良好。所以,以上产品已经由实验室阶段转入生产阶段。在原WZ-0-1系统的基础上,又新研制出了WZ64-0-2系统,这一系统在WZ32-0-1的基础上又增加了以下功能:1车实现自检,并显示报警信息,将故障隐患及故障点直接显示给司机,使汽车行使更加安全;2主频 由3.3K上升到6K,响应时间保持0.01S;3控制点由32点上升到64点;以上系统的实验阶段已经结束。现在正在研制WZ128-0-10系统,这一系统的主要特点是:可以将全车的所有模拟信号转变
6、为WZ信号,从而完成包括电喷,ABS,仪表在内的整车所有信号融入一线控制之中,彻底实现整车的一线制控制。第二章 系统硬件设计2.1 方案论证 设计要求:以DSP为主控制器,设计一个检测装置。接受板接收发射板以主频3.3K发出一系列 2V或4V电平的脉冲,要求控制相应的继电器动作。要求自行模拟发射板发出主频3.3K发出一系列2V或4V电平的脉冲。在相应位置的2V电平脉冲变为4V电平脉冲。然后进行检测,判断接收板的好坏。2.1.1 设计原理一线制汽车控制器接收板的工作过程是:接收板接收来自发射板以主频3.3K发出的一系列2V或4V的电平脉冲,当脉冲为2V时,接收板不动作,当脉冲为4V时,接收板相应
7、的控制信号变为12V电平,控制相应的继电器动作。根据上述原理,接收检测板首先要模拟发射板发出3.3K发出一系列2V或4V的电平脉冲,在相应位置的2V电平脉冲基础上叠加为4V电平脉冲,然后对接收板的输出信号进行检测,以判断接收板的好坏。2.1.2 论证方案方案一:采用89C51单片机实现。单片机软件编程自用度大,可用编程实现各种控制算法和逻辑控制。不过单片机对于外部数据的采集需另接A/D转换来实现,导致外围电路比较复杂。 方案二:采用高速数字信号处理器 DSP实现。DSP内置模数转换器等外设,片内具有丰富的可编程多路复用I/O引脚,而且它的数据处理速度与89C51相比更有优势,在软件编程方面,D
8、SP的语言可以采用C语言和汇编语言相结合的更为灵活的方式。基于以上优点,本设计采用高速数字信号处理器(DSP)作为控制电路的核心。2.1.3 器件选择主控制器的选择在众多的DSP芯片种类中,最成功的是美国德克萨斯仪器公司(Texas Instruments,简称TI)的一系列产品。TI公司在1982年成功推出启迪一代DSP芯片TMS32010及其系列产品TMS32011、TMS32C10/C14/C15/等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS32C30/C31/C32,第四代DSP芯片TMS32C40/C44,第五代DSP
9、芯片TMS32C50/C51/C52/C53以及集多个DSP于一体的高性能DSP芯片TMS32C80/C82等。采用TI公司的TMS320LF240x芯片作为控制器。TMS320LF240x芯片作为DSP控制器24x系列的新成员,是TMS320C2000平台下的一种定点DSP芯片。从结构设计上讲,240x系列DSP提供了低成本、低消耗、高性能的处理能力,对电机的数字化控制作用非常突出。TI公司的TMS320F240器件是基于TMS320C2 型16位定点数字信号处理器(DSP)的新型DSP控制器。由于F240器件片内集成了544字双口RAM、双10位模数转换模块、串行通信接口以及提供死区功能和
10、12路比较/脉冲宽度调制通道的事件管理器模块,并将存储器和外设集成到控制器内部,使得F240在诸多微机控制系统中得到了广泛的应用。基于上述原因,本次设计采用TMS320F240作为控制器 存储器 CY7C199CY7C199是一种采用COMS工艺制成的32K 8位的SRAM芯片,采用28引脚DIP封装或其它的封装形式。该电源5伏供电,其输入输出电平与TTL电平兼容,三态输出。它的读写访问时间根据不同型号可从20ns200ns。该芯片具有低功耗操作方式,当未选通时,芯片处于底功耗状态,这时可减少80%以上的功耗,只需要2伏电源供电,几十微安电流就可以保持数据不变,此性能可用于电池供电的数据掉电保
11、护操作。AD转换 DAC8562 目前,在测试和控制领域中,大量地使用了数据采集系统,而且位数更多、速度更快、精度更高的D/A转换器件不断出现。DAC8562是高速高精度12位数字模拟转换器芯片,由于DAC8562转换器件的功耗特别低,而且其线性失真可低达0.012%,因此,该D/A转换器芯片特别适合于精密模拟数据的获得和控制。此外,由于DAC8562器件内部带有激光制作的精密晶片电阻和温度补偿电路以及NMOS开关,因而可充分保证DAC8562具有12位的精度。 DAC8562其性能指标,精度要求完全符合设计要求。运放电路 LM324 设计中,运放电路主要实现电平脉冲的放大,并且,放大倍数不是
12、很大,LM324是四运放集成电路,它采用14脚双列直插塑料封装。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。使用LM324运放电路可实现设计要求。时钟电路设计采用封装好的晶体振荡器,将外部时钟源直接输入X2/CLKIN引脚,而将X1引脚悬空。如图所示。只要将晶体振荡器的4脚接+5V,2引脚接地,就可以在3脚上获得时钟信号。 图2.1晶体振荡器复位电路TMS320F240芯片的引脚/RS是复位输入信号,当该引脚电平为低时使芯片复位。在设计复位电路时,一般应从两种复位的需要去考虑,一个是上电复位;另一个是工作中的复位。在系统刚接通电源时,复位电路应处于低电平以使系统从
13、一个初始状态开始工作:这段低电平时间应该大于系统的晶体振荡器起振时间,以便避开振荡器起振时的非线性特性对整个系统的影响:通常,共振需要100200ms的稳定时间,则上电复位时间应该大于200ms:工作中复位则要求复位的低电平至少保持6个时钟周期,以使芯片的初始化能够正确的完成。2.2主控制器2.2.1 DSP发展概述及DSP基础一.什么是DSP芯片 DSP芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片
14、一般具有如下的一些主要特点:(一)在一个指令周期内可完成一次乘法和一次加法。(二)程序和数据空间分开,可以同时访问指令和数据。(三)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。(四)具有低开销或无开销循环及跳转的硬件支持。(五)快速的中断处理和硬件I/O支持。(六)具有在单周期内操作的多个硬件地址产生器。(七)可以并行执行多个操作。(八)支持流水线操作,使取指、译码和执行等操作可以重叠执行。与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。二.DSP芯片的发展 世界上第一个单片DSP芯片是1978年AMI公司宣布的S2811,1979年美国Iintel公司发布的商用可编
15、程期间2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须的单周期芯片。 1980年。日本NEC公司推出的PD7720是第一个具有乘法器的商用DSP 芯片。第一个采用CMOS工艺生产浮点DSP芯片的是日本的Hitachi 公司,它于1982年推出了浮点DSP芯片。1983年,日本的Fujitsu公司推出的MB8764,其指令周期为120ns ,且具有双内部总线,从而处理的吞吐量发生了一个大的飞跃。而第一个高性能的浮点DSP芯片应是AT&T公司于1984年推出的DSP32。 在这么多的DSP芯片种类中,最成功的是美国德克萨斯仪器公司(Texas Instruments,
16、简称TI)的一系列产品。TI公司灾982年成功推出启迪一代DSP芯片TMS32010及其系列产品TMS32011、TMS32C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS32C30/C31/C32,第四代DSP芯片TMS32C40/C44,第五代DSP芯片TMS32C50/C51/C52/C53以及集多个DSP于一体的高性能DSP芯片TMS32C80/C82等。 自1980年以来,DSP芯片得到了突飞猛进的发展,DSP芯片的应用越来越广泛。从运算速度来看,MAC(一次乘法和一次加法)时间已经从
17、80年代初的400ns(如TMS32010)降低到40ns(如TMS32C40),处理能力提高了10多倍。DSP芯片内部关键的乘法器部件从1980年的占模区的40左右下降到5以下,片内RAM增加一个数量级以上。从制造工艺来看,1980年采用4的N沟道MOS工艺,而现在则普遍采用亚微米CMOS工艺。DSP芯片的引脚数量从1980年的最多64个增加到现在的200个以上,引脚数量的增加,意味着结构灵活性的增加。此外,DSP芯片的发展,是DSP系统的成本、体积、重量和功耗都有很大程度的下降。三.DSP芯片的分类 DSP的芯片可以按照以下的三种方式进行分类。(一)按基础特性分 这是根据DSP芯片的工作时
18、钟和指令类型来分类的。如果DSP芯片在某时钟频率范围内的任何频率上能正常工作,除计算速度有变化外,没有性能的下降,这类DSP芯片一般称之为静态DSP芯片。 如果有两种或两种以上的DSP芯片,它们的指令集和相应的机器代码机管脚结构相互兼容,则这类DSP芯片称之为一致性的DSP芯片。(二)按数据格式分 这是根据DSP芯片工作的数据格式来分类的。数据以定点格式工作的DSP芯片称之为定点DSP芯片。以浮点格式工作的称为DSP芯片。不同的浮点DSP芯片所采用的浮点格式不完全一样,有的DSP芯片采用自定义的浮点格式,有的DSP芯片则采用IEEE的标准浮点格式。(三)按用途分 按照DSP芯片的用途来分,可分
19、为通用型DSP芯片和专用型的DSP芯片。通用型DSP芯片适合普通的DSP应用,如TI公司的一系列DSP芯片。专用型DSP芯片市为特定的DSP运算而设计,更适合特殊的运算,如数字滤波,卷积和FFT等。四.DSP芯片的选择(一)设计DSP应用系统,选择DSP芯片时非常重要的一个环节。只有选定了DSP芯片才能进一步设计外围电路集系统的其它电路。总的来说,DSP芯片的选择应根据实际的应用系统需要而确定。一般来说,选择DSP芯片时考虑如下诸多因素。1.DSP芯片的运算速度。运算速度是DSP芯片的一个最重要的性能指标,也是选择DSP芯片时所需要考虑的一个主要因素。DSP芯片的运算速度可以用以下几种性能指标
20、来衡量:(1)指令周期。就是执行一条指令所需要的时间,通常以ns为单位。(2)MAC时间。即一次乘法加上一次加法的时间。(3)FFT执行时间。即运行一个N点FFT程序所需的时间。(4)MIPS。即每秒执行百万条指令。(5)MOPS。即每秒执行百万次操作。(6)MFLOPS。即每秒执行百万次浮点操作。(7)BOPS。即每秒执行十亿次操作。2.DSP芯片的价格。根据一个价格实际的应用情况,确定一个价格适中的DSP芯片。3.DSP芯片的硬件资源。4.DSP芯片的运算速度。5.DSP芯片的开发工具。6.DSP 芯片的功耗。7.其它的因素,如封装的形式、质量标准、生命周期等。(二)DSP应用系统的运算量
21、是确定选用处理能力多大的DSP芯片的基础。那么如何确定DSP系统的运算量以选择DSP芯片呢?1.按样点处理 按样点处理就是DSP算法对每一个输入样点循环一次。例如;一个采用LMS算法的256抽头德的自适应FIR滤波器,假定每个抽头的计算需要3个MAC周期,则256抽头计算需要256*3=768个MAC周期。如果采样频率为8KHz,即样点之间的间隔为125s的时间,DSP芯片的MAC周期为200s,则768个周期需要153.6s的时间,显然无法实时处理,需要选用速度更快的芯片。2.按帧处理 有些数字信号处理算法不是每个输入样点循环一次,而是每隔一定的时间间隔(通常称为帧)循环一次。所以选择DSP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DSP 设计 一线 汽车 控制器 毕业设计 论文

链接地址:https://www.31ppt.com/p-3931600.html