904953422基于单片机控制的粮仓多点温度监控系统设计毕业设计.doc
《904953422基于单片机控制的粮仓多点温度监控系统设计毕业设计.doc》由会员分享,可在线阅读,更多相关《904953422基于单片机控制的粮仓多点温度监控系统设计毕业设计.doc(17页珍藏版)》请在三一办公上搜索。
1、毕业论文题 目: 粮仓多点温度监控系统设计系 别:电气工程系专 业:电气自动化 摘 要目前许多场合都要对温度进行控制。如仓库,不同的储藏室储存物品的温度都不同;再比如医院,为了使病人的治疗效果最好,需要对每一个病房的温度进行控制。该文研究的多点温度监控系统能够对多个位置的温度进行设置、检测,根据温度设置值与检测值来控制调温设备运转,调节温度。 目录 1引言. 1 设计要求. 41.1 监控要求. 41.2 受控对象的数学模型. 42 系统的硬件配置. 42.1 单片机和系统总线. 4 AT89S51单片机历史版本AT89S51单片机-主要特性 AT89S51具有如下特点:40个引脚,4kByt
2、esFlash片内程序存储器,128bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。8031CPU与MCS-51兼容4K字节可编程F
3、LASH存储器(寿命:1000写/擦循环)全静态工作:0Hz-24KHz三级程序存储器保密锁定128*8位内部RAM32条可编程I/O线两个16位定时器/计数器6个中断源可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路AT89S51单片机-管脚说明 VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内
4、部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对
5、外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断0)P3.3/INT1(外部中断1)P3.4T0(记时器0外部输入)P3.5T1(记时器1外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读
6、选通)P3口同时为闪烁编程和编程校验接收一些控制信号。I/O口作为输入口时有两种工作方式即所谓的读端口与读引脚读端口时实际上并不从外部读入数据而是把端口锁存器的内容读入到内部总线经过某种运算或变换后再写回到端口锁存器只有读端口时才真正地把外部的数据读入到内部总线上面图中的两个三角形表示的就是输入缓冲器CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作这是由硬件自动完成的不需要我们操心1然后再实行读引脚操作否则就可能读入出错为什么看上面的图如果不对端口置1端口锁存器原来的状态有可能为0Q端为0Q为1加到场效应管栅极的信号为1该场效应管就导通对地呈现低阻抗,此时即使引脚上输入的信号为
7、1也会因端口的低阻抗而使信号变低使得外加的1信号读入后不一定是1若先执行置1操作则可以使场效应管截止引脚信号直接加到三态缓冲器中实现正确的读入由于在输入操作时还必须附加一个准备动作所以这类I/O口被称为准双向口89C51的P0/P1/P2/P3口作为输入时都是准双向口接下来让我们再看另一个问题从图中可以看出这四个端口还有一个差别除了P1口外P0P2P3口都还有其他的功能RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不
8、变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管
9、是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。AT89S51单片机-相关词条 AT89C51单片机 AT89S52单片机 AT89C2051单片机AT89S51单片机-参考资料 2.2 硬件介绍. 53 粮仓温度监控系统的组成框图. 104 粮仓温度监控系统结构图及总述. 125 粮仓温度监控系统软件设计. 135.1 单片机粮仓温度监控系统软件结构图135.2 单片机监控
10、流程图. 145.3 粮仓温度变换程序模块. 145.4 粮仓温度非线性转换程序模块. 156 通信协议的设计. 176.1 软件设计. 176.1.1 通信协议概述. 176.2 通信协议说明. 186.2.1信号帧分类. 186.2.2信号帧格式. 186.2.3 通信协议处理流程. 196.3 PC 上位机的软件设计. 226.3.1 PC软件设计方法的选择. 226.3.2 PC软件通信方式的选择. 226.3.3具体实现方法. 246.4 单片机软件设计. 276.4.1波特率. 276.5 通信协议设计结论. 286.5.1通信可靠性分析. 286.5.2通信速度分析. 287 P
11、rotel99设计原理图. 308 硬件电路板的制作. 339 设计总结. 35谢 辞. 36参考文献. 37附 录1 381 引言设计题目:粮仓温度智能监控系统 我选择8031单片机 AD590温度传感器 ,HS1100/HS1101湿度传感器,技术参数 温度检测范围 : -30-+50 测量精度 : 0.5 湿度检测范围 : 10%-100%RH 检测精度 : 1%RH 显示方式 : 温度:四位显示 湿度:四位显示 报警方式 : 三极管驱动的蜂鸣音报警 多点温度监控系统的设计l 系统的总体结构及功能 本系统的总体结构框图如图1所示,为了满足多通道数据采集和处理,系统采用了一台上位机和多个下
12、位机的集总式结构。上位机采用AT89S51单片机,下位机采用AT89C2051单片机。上位机与下位机之间采用RS 485总线通信。其中上位机系统配置液晶显示屏、按键。按键用于调整各个点的预置温度和系统时间,查询各个点的预置温度值、实际温度值以及调温设备运行情况,输入下位机的控制信息。液晶显示屏用于显示系统时间,以及各点的预置温度值、实际温度值和调温设备运行情况,如1 min内没有任何操作,则液晶显示屏上开始循环显示各个点的实际温度值、预置温度值以及调温设备运转情况,每一个点的数据在液晶屏上显示的时间是8 s。下位机负责温度采集和控制调温设备运转,温度传感器采用DSl8820。上位机首先将预置温
13、度值发送到下位机,下位机将实际温度与预置温度进行比较后输出调温设备控制信号,并将实际温度与调温设备运转状态发送到上位机。2 硬件电路设计21 下位机电路设计 下位机电路主要由三部分构成:温度采集电路、RS 485总线接口电路、调温设备的控制电路,其电路原理图如图2所示。211 温度采集电路 温度传感器采用DSl8820,其是一种单总线智能型温度传感器,只有三线接口,分别为地线、数据线、电源线。DSl8820输出信号为数字信号,处理器与DSl8820通过数据线来完成双向通信,因此采用DSl8820使得电路十分简单。温度变换功率可以来源于外电源,也可以来源于数据总线,总线本身也可以向所挂接的DSl
14、8820供电。DSl8820的电压范围为+3O+55 V,测温范围为一55+125,固有的测温分辨率为O5,最高精度可达0067 5,最大的转换时间为200 ms。一条总线上面可以挂接多个Dsl8820实现多点测温。本系统中每台下位机只接一个DSl8820。 采用单片机的P37口与DS18820进行通信,采集温度信号,由于其是双向通信,内部结构是开漏,所以在总线上要加一个10。k上拉电阻。212 RS 485总线接口电路 本系统上位机与下位机之间采用RS 485总线通信,其通信距离可达1 200 m。总线驱动芯片采用MAX485,RO接单片机的RXD,DI接TXD,MAX485芯片的发送和接收
15、功能转换由芯片的RE,DE端控制。DE=1时,MAX485处于发送状态;RE=O,DE=0时,芯片处于接收状态。将RE,DE接在单片机的一根口线P34上。 在上电复位时,为了避免分机咬总线的情况,总线上的各分机应处于接收状态。而在上电复位时,单片机各端口处于高电平状态,硬件电路稳定也需要一定的时间,则可能向总线发送信息,为了避免这种情况,将P34口接一个74HCl4反相器,使MAX485上电时处于接收状态。另外在数据传输之前,先要通过一个低电平起始位实现握手,给R0外接10 k上拉电阻,防止干扰信号误触发产生负跳变,使单片机进入接收状态。总线上面挂接多个分机,其中任何一只芯片故障就可能将总线“
16、拉死”,因此在MAX485的A,B口线与总线之间各串接一只20的电阻实现总线隔离。如果是最后一台分机,则在差分端口A,B之间接120 的平衡匹配电阻,减少由于不匹配而引起的反射,并且能够吸收噪声,抑止干扰,保证通信质量。注意不能在中间分机节点上并接平衡匹配电阻。213 输出控制电路 上位机向下位机发送命令和预置温度,下位机接收到之后,解析命令,并将预置温度与实际温度比较,根据命令和比较结果,利用P35口控制调温设备。当P35输出低电平时,U1导通发光,使晶体管导通,从而T1导通,驱动继电器K工作,使调温设备导通工作。当P35为高电平时,U1不导通,晶体管不导通,T1也截止,继电器不通电,调温设
17、备不工作。22 上位机电路 上位机电路包括RS 485总线接口电路、键盘电路和液晶显示电路。其中总线接口电路与下位机总线接口电路基本一致。其电路原理图如图3所示。下面介绍键盘电路和显示电路。 221 键盘电路 上位机电路中提供6个按键用于温度设置、温度查询、系统时间设置、工作待机设置。它们是“ONOFF”键、“+”键、“”键、“SET”键、“ENQ”键、“TIME”键,分别与AT89S51的P20,P21,P22,P23,P24,P25相连。“SIET”键用于选择下位机,之后可按“ONOFF”键使对应的下位机工作待机,也可按“+”,“一”键给该分机设置预置温度。“ENQ”键用于查询下位机的预置
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 904953422 基于 单片机 控制 粮仓 多点 温度 监控 系统 设计 毕业设计
链接地址:https://www.31ppt.com/p-3931203.html