2×600MW发电厂电气部分初步设计毕业设计论文.doc
《2×600MW发电厂电气部分初步设计毕业设计论文.doc》由会员分享,可在线阅读,更多相关《2×600MW发电厂电气部分初步设计毕业设计论文.doc(64页珍藏版)》请在三一办公上搜索。
1、摘 要本毕业设计论文是2600MW发电厂电气部分初步设计。全论文除了摘要、毕业设计书之外,还详细的说明了各种设备选择的最基本的要求和原则依据。 变压器的选择包括:发电厂主变压器、高压备用变压器及高压厂用变压器的台数、容量、型号等主要技术数据的确定;电气主接线主要介绍了电气主接线的重要性、设计依据、基本要求、各种接线形式的优缺点以及主接线的比较选择,并制定了适合本厂要求的主接线; 厂用电接线包括:厂用电接线的总要求以及厂用母线接线设计。短路电流计算是最重要的环节,本论文详细的介绍了短路电流计算的目的、假定条件、一般规定、元件参数的计算、网络变换、以及各短路点的计算等知识; 高压电气设备的选择包括
2、母线、高压断路器、隔离开关、电流互感器、电压互感器、高压开关柜的选择原则和要求,并对这些设备进行校验和产品相关介绍 。而根据本论文所介绍的高压配电装置的设计原则、要求和500KV的配电装置,决定此次设计对本厂采用分相中型布置。继电保护和自动装置的规划,包括总则、自动装置、一般规定和发电机、变压器、母线等设备的保护, 而发电厂和变电所的防雷保护则主要针对避雷针和避雷器的设计。此外,在论文适当的位置还附加了图纸(主接线、平面图、防雷保护等)及表格以方便阅读、理解和应用。关键词 电力系统,短路计算,设备选择,母线,高压断路器 目 录摘 要IAabstractII第一部分 说明书1第1章 主变压器的选
3、择11.1 容量和台数的确定11.2 型式和结构的选择11.2.1 相数11.2.2 绕组数与结构11.2.3 绕组接线组别21.2.4 调压方式21.2.5 冷却方法2第2章 电气主接线的设计32.1 主接线设计的要求和原则32.1.1 主接线设计的基本要求32.1.2 大机组超高压主接线可靠性的特殊要求32.1.3 主接线设计的原则32.2 原始资料分析42.3 主接线方案的拟定42.3.1 发电机-变压器单元接线42.3.2 500KV电压母线接线42.4 主接线方案的比较72.5 主接线方案的确定7第3章 厂用电系统设计83.1 厂用电接线的设计原则83.2 厂用电压等级的确定83.3
4、厂用电源的引接方式83.3.1 厂用工作电源的引接83.3.2 备用/启动电源的引接83.4 厂用电接线形式93.5厂用高压变压器的选择93.5.1 额定电压的确定93.5.2 台数和型式的选择93.5.3 容量得选择.103.5.4 电抗的选择103.6 厂用电系统接线113.6.1 高压厂用电接线113.6.2 低压厂用电接线11第4章 短路电流计算124.1 短路电流计算的主要目的124.2 一般规定124.2.1 计算的假定条件124.2.2 接线方式124.2.3 短路类型124.2.4 短路计算点134.2.5 短路电流计算方法134.3 短路电流计算步骤134.4 计算公式144
5、.4.1 元件参数计算144.4.2 网络变换144.4.3 计算电抗164.4.4 短路点短路电流周期分量有效值的计算164.4.5 短路的冲击电流164.4.6 电流分布系数及转移电抗16第5章 电气设备和导体的选择185.1 电气设备选择的一般原则185.1.1按正常工作条件选择185.1.2 按短路状态校验195.2 500kV高压设备的选择195.2.1 高压断路器的选择195.2.2 隔离开关的选择205.2.3 电流互感器的选择215.2.4 电压互感器的选择215.2.5 并联电抗器的选择225.3 6KV高压开关柜的选择225.3.1 种类和型式的选择225.3.2 主开关的
6、选择235.3.3 额定电压和额定电流的选择235.3.4 防护等级的选择235.3.5 开断和关合短路电流的选择235.3.6 短路热稳定和动稳定校验245.4 裸导体的选择245.4.1 500KV母线的选择245.4.2 封闭母线的选择245.4.3 电晕电压校验255.4.4 热稳定校验25第6章 500KV高压配电装置设计266.1 配电装置的基本要求266.2 配电装置设计的基本步骤266.3 配电装置的型式选择266.4 配电装置的安全净距266.5 屋外配电装置的布置原则27第7章 继电保护和自动装置配置287.1 继电保护配置287.1.1 发电机保护287.1.2 变压器保
7、护297.1.3 并联电抗器保护307.1.4 500kV线路保护317.1.5 母线和断路器失灵保护317.2 自动装置配置32第8章 防雷保护设计338.2 直击雷的防护338.2.1 直击雷防护措施338.2.2 避雷针装设的基本原则338.2.3 避雷针的保护范围338.3 入浸雷的防护348.3.1 入浸雷防护措施348.3.2 避雷器的配置要求348.3.3 避雷器的配置原则348.3.4 避雷器参数选择358.4 防雷接地35第二部分 计算书36第9章 变压器的选择计算369.1 主变压器的选择369.2 厂用高压变压器的选择36第10章 短路电流计算3810.1 短路电流计算接
8、线图3810.2 参数计算3810.3 500kV母线短路(k1).3910.4 发电机出口短路(k2)4010.5 厂用高压工作变压器6kV一段短路(k3)4210.6 备用/启动变压器6kV一段短路(k4)4410.7 计算结果列表46第11章 电气设备和导体的选择计算4711.1 500kV高压设备的选择4711.1.1 高压断路器的选择4711.1.2 高压隔离开关的选择4711.1.3 电流互感器的选择4811.1.4 电压互感器的选择4811.1.5 并联电抗器的选择4911.2 6kV高压开关柜的选择4911.3 裸导体的选择5011.3.1 500kV主母线的选择5011.3.
9、2 发电机出口主封闭母线选择5211.3.3 共箱封闭母线选择52第12章 防雷保护设计5412.1 避雷针的布置图5412.2 避雷针高度的确定54总 结56致 谢57参考文献58附 录59第一部分 说明书第1章 主变压器的选择1.1 容量和台数的确定主变压器的容量、台数直接影响主接线的形式和配电装置的结构。如果变压器容量选得过大、台数过多,不仅增加投资,增大占地面积,而且也增加了运行电能损耗,设备未能充分发挥效益;若容量选得过小,将可能“封锁”发电机剩余功率的输出,这在技术上是不合理的,因为每千瓦的发电设备投资远大于每千瓦的变电设备投资。为此,必须合理地选择变压器。对单元接线的变压器,其容
10、量应按发电机的额定容量扣除本机组的厂用负荷后,留有的裕度来确定,即 (1.1)式中 变压器的计算容量,kVA; 发电机的额定功率,kW;发电厂的厂用电率,%; 发电机的功率因数。 1.2 型式和结构的选择1.2.1 相数 主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。由于大型变压器随着容量的增大,尺寸和重量也增大。所以当发电厂与系统连接的电压等级为500kV时, 600MW机组单元连接的主变压器综合考虑运输和制造条件,经技术经济比较,可采用单相组成的三相变压器。采用单相变压器时,由于备用单相变压器一次性投资大,利用率不高,故应综合考虑系统要求、设备质量以及按变
11、压器故障率引起的停电损失费用等因素,确定是否装设备用单相变压器。若确需装设,可按地区(运输条件允许)或同一电厂34组的单相变压器(容量、变比与阻抗均相同),合设一台备用单相变压器考虑。 1.2.2 绕组数与结构 电力变压器按每相的绕组数分为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂式等型式。容量为200MW以上大机组都采用与双绕组变压器成单元接线,而不于三绕组变压器组成单元接线。这是由于机组容量大,其额定电流及短路电流都很大,发电机出口断路器制造困难,价格昂贵,且对供电可靠性要求较高,所以,一般在发电机回路及厂用分支回路均采用分相封闭母线,而封闭母线
12、回路中一般不装高断路器和隔离开关。 1.2.3 绕组接线组别 变压器三相绕组的接线组别必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只有星形“Y”和三角形“d”两种。而在发电厂中,一般考虑系统或机组的同步并列要求以及限制3次谐波对电源的影响等因素,主变压器接线组别一般都选用YN,d11常规接线。全星形接线变压器用于中性点不接地系统时,3次谐波无通路,将引起正弦波电压畸变,并对通信设备发生干扰,同时对继电保护整定的准确度和灵敏度均有影响。在我国,全星形接线变压器均为自耦变压器,电压变比多为220/110/35、330/220/35、330/110/35、500/220/11
13、0kV,由于500、330、220、110kV均系中性点直接接地系统,系统的零序阻抗较小,所以自耦变压器设置三角形绕组用以对线路3次谐波的分流作用已显得不十分必要。1.2.4 调压方式 调压是通过变压器的分接开关切换,改变变压器高压侧绕组匝数,从而改变其变比,实现电压的调整。切换方式有两种:一种是不带电切换,称为无激磁调压,调整范围通常在以内;另一种是带负荷切换,称为有载调压,调整范围可达,但结构复杂、价格昂贵,只有在两种情况下才予以选用:接于出力变化大的发电厂的主变压器,特别是潮流方向不固定,且要求变压器二次电压维持在一定水平时;接于时而为送端,时而为受端,具有可逆工作特点的联络变压器,为保
14、证供电质量,要求母线电压恒定时。通常发电厂主变压器中很少采用有载调压,因为可以通过调节发电机励磁来实现调节电压,一般均采用无激磁调压。 1.2.5 冷却方法 电力变压器的冷却方式随变压器型式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。大容量变压器一般采用强迫油循环风冷却,在发电厂水源充足的情况下,为压缩占地面积,也可采用强迫油循环水冷却。强迫油循环水冷却的散热效率高,节省材料,减小变压器本体尺寸,但要一套水冷却系统和有关附件,在冷却器中,油与水不是直接接触,在设计时和运行中,以防止万一产生泄漏时,水不至于进入变压器内,严重地影响油的绝缘性
15、能,故对冷却器的密封性能要求较高。第2章 电气主接线的设计2.1 主接线设计的要求和原则电气主接线是发电厂电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性,并对电气设备选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确、合理设计,必须综合处理各个方面的因素,经过技术、经济论证比较后方可确定。2.1.1 主接线设计的基本要求1.可靠性定量分析主接线的可靠性时,考虑发电厂在系统中的地位和作用、用户的负荷性质和类别、设备制造水平及运行经验等诸多因素。定性分析主接线的可靠性考虑:断路器检修时,能否不影响供电;线路、断路器或母线故
16、障时以及母线或母线隔离开关检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对I、II类负荷的供电;发电厂或变电站全部停电的可能性;大型机组突然停运时,对电力系统稳定运行的影响与后果等因素。2.灵活性电气主接线应能适应适应运行状态,并能灵活地进行运行方式的转换。灵活性包括:操作的方便性、调度的方便性和扩建的方便性。3.经济性在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。通常设计应在满足可靠性和灵活性的前提下做到经济合理。经济性主要考虑:节省一次投资、占地面积少和电能损耗少。 2.1.2 大机组超高压主接线可靠性的特殊要求 任何断路器检修,不影响对系统的连续供电;任何一进出线断路
17、器故障或拒动以及母线故障,不应切除一台以上机组和相应的线路;任何一台断路器检修和另一台断路器故障或拒动相重合、以及当母线分段或母线联络断路器故障或拒动时,不应切除两台以上机组和相应的线路。2.1.3 主接线设计的原则根据发电厂在电力系统中的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、输送电压等级、进出线回路数,供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境等条件确定。应满足可靠性、灵活性和经济性的要求。2.2 原始资料分析本次设计的凝汽式发电厂,装机容量为2600MW,属大型发电厂,在系统中有举足轻重的地位,供电容量大、范围广,发生事故可能
18、使系统运行稳定遭到破坏,甚至瓦解,造成巨大损失,又因为高电压、大电流对电器设备又有特殊的要求,所以必须采用供电可靠性高、调度灵活的接线形式,并要进行定性分析。以最大限度的避免由于主接线结构引起的局部限出力、限送电。考虑环境条件对电气设备的影响,尤其是温度和海拔高度超过电气设备的使用条件时,应采取相应措施。由于厂址平均海拔高度为50米,一般不会超过设备额定使用高度,所以不用考虑高度对电气设备的影响;电气设备一般使用的额定环境温度为,而电厂所在地的年最高温度为,平均温度为15,最低温度为零下33,设备实际运行环境温度不会超过其额定温度,所以对一般设备不会造成影响;但裸导体的额定环境温度为,其允许电
19、流必须根据实际环境温度进行修正。另外要考虑重型设备运输问题。 2.3 主接线方案的拟定2.3.1 发电机-变压器单元接线图2.1 发电机-双绕组变压器单元接线600MW发电机组大都采用发电机-双绕组变压器单元接线,如图2.1所示。这种接线开关设备少,操作简便,有利于实现机、炉、电的集中控制。由于省去了高压配电装置,明显地减少了设备检修工作量,以及因不设发电机电压级母线,在发电机出口可不装断路器,而在发电机和变压器之间采用分相封闭母线,使得在发电机和变压器低压侧短路的几率和短路电流相对减小,避免了由于额定电流或短路电流过大,使得选择出口断路器时,受制造条件或价格甚高等原因造成的困难。2.3.2
20、500KV电压母线接线1.双母线四分段接线双母线四分段(双母双分段)接线方式如图2.2所示。由于随着断路器制造质量的提高,旁路母线的应用已逐渐减少,按规定采用SF6断路器的主接线不宜增设旁路设施。双母线四分段接线具有如下优点:(1) 母线可以轮流检修而不致使供电中断。当一组母线检修时,可将该组母线上的电源和负荷切换到另一组母线上运行。(2) 正常运行时,电源和线路均分在四段母线上,母联和分段断路器均合上,四段母线同时并列运行。当任意一段母线故障时,只有1/4电源和负荷停电;当任一分段或母联断路器故障时,只有1/2电源和负荷停电。(3) 当进出线母线侧隔离开关需要检修时,只需该进线(或出线)和与
21、该隔离开关相连的母线停电,而不影响其他回路的正常供电。(4) 运行中如一段母线故障,可将故障母线上的负荷和电源,倒到正常母线上运行,能迅速恢复供电。(5) 高度灵活。各电源和负荷可以任意在一组母线上运行,并可根据潮流变化或其它要求改变运行方式。(6) 扩建方便。向双母线左右任何方向扩建,均不会影响两组母线的电源和负荷自由组合分配,在施工中也不会造成原有回路停电。图2.2 双母线四分段接线双母线四分段接线也存在缺点:当母线故障或检修时,隔离开关作为倒换操作电器,倒闸操作比较复杂,容易造成误操作。由于双母线四分段接线具有较高的可靠性,而且运行经验也比较丰富,所以可用于500kV系统。2.一台半断路
22、器接线一台半断路器(3/2)接线是600MW机组电压母线广泛采用的接线形式,不但兼有及环形接线的全部优点,而且可靠性和灵活性更高。另外与双母线四分段接线相比,隔离开关少,配电装置结构简单,占地面积小,土建投资少,隔离开关也不用参加倒闸操作,减少了因误操作引起事故的可能性。但由于每一回路包含2个断路器,进出线故障将引起2个断路器动作,增加了断路器的维护工作量。如图2.3所示,一台半断路器采用交叉布置的方式,即将同名回路交叉布置在不同串中的不同母线侧,可避免同名回路全部停运的现象。主变压器与500kV的配电装置之间常采用干式电缆连接,不会增加间隔布置的困难,反而提高了供电可靠性。图2.3 一台半断
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2×600MW发电厂电气部分初步设计 毕业设计论文 600 MW 发电厂 电气 部分 初步设计 毕业设计 论文
链接地址:https://www.31ppt.com/p-3930305.html