材料表面强化技术.doc
《材料表面强化技术.doc》由会员分享,可在线阅读,更多相关《材料表面强化技术.doc(27页珍藏版)》请在三一办公上搜索。
1、前 言作为古老又新颖的学科,表面强化技术为致力于改善材料表面化学性质、组织机构、应力状态的性质,在人们生活中被广泛应用。通过掺杂、扩散、离子注入、化学沉积、电镀以及电子束等技术改变材料表面性质的研究,使得我们能得到更多表面性质优良的金属,使金属得到叫高的抗腐蚀、抗耐磨性,使工业生产设备及产品使用范围更广1。这样,我们能得到更好的表面性质金属及非金属,节约了人类资源,保护和改善了我们的生活环境。材料表面强化技术已经成为了现在制造业最伟大的创造。追溯至春秋晚期,我国已应用铜器热镀锡和鎏金技术,从工业革命开始到最近50年,材料表面强化技术得到飞速发展。本文吸取现代先进技术的优点,对表面技术的应用进行
2、总结,取其精华,去其糟粕,进行综合陈述及比较。虽然创新很少,但对现有技术的归纳比较在一定程度上更好的促进了表面技术的发展和研究。本论文重点研究现有的表面强化技术以及这些技术的应用,意在归纳总结,学习传承。使得我们能更好的学习和了解这些先进的表面技术,为我们以后的研发和应用做好铺垫。表面强化技术是表面工程的一个分支,是工程科学技术中一个涉及学科广泛、活力很强、成果突出并与生产实践紧密结合的领域,它渗透到航空航天、信息技术、新材料技术以及先进制造技术等前沿技术的各个方面。从高科技产品到人们日常生活都离不开材料表面强化技术。离子束、激光束、电子束、微波及超高真空技术的开发,引起了表面工程技术研究和应
3、用的热潮,并成为了世界最关键的技术之一2。本文对材料表面强化技术及应用的研究进行了探讨。1 表面强化技术概述1.1表面强化技术概述 表面工程是一个既古老又新颖的学科,人们使用表面工程技术已有悠久的历史。追溯到几千年前,我国早在春秋战国时期就已经开始应用钢的淬火、铜器热镀锡、鎏金及油漆等古老技术3。但是,表面工程的迅速发展还是从19世纪工业革命开始,20世纪80年代成为世界上10大关键技术,进入20世纪90年代发展势头出现工程研究的热潮,几乎涉及了工业的各个领域,表面工程技术仍是将是主导21世纪的关键技术之一。 表面工程是经表面欲处理后,通过表面涂覆、表面改性或表面复合处理,改变固体金属表面或非
4、金属表面的化学成分、组织结构、形态和应力状态等,以获得所需要表面性能的系统工程。它是近代技术与经典表面工艺相结合而繁衍、发展起来的,有着坚实的科学基础,具有明显的交叉、边缘学科的性质和极强的实用性。1.2 表面技术的概念及意义表面工程指利用各种物理的、化学的或机械的工艺规程使零件表面获得特殊的材料成分、组织结构和性能,以提高产品质量的工程。它概括了“表面处理”、“表面加工”、“表面涂层”、“表面改性”等内容。表面强化技术是表面工程的核心内容,是决定硬化层的成分、组织结构和性能的关键技术4。表面强化技术主要通过各种工艺来增强材料的表面强度、硬度、耐磨性、耐蚀性和物理性能等综合机械性能。应用各种表
5、面强化技术可以充分发挥材料的潜力、节约能源川;制备特殊的表面强化层;提高经济效益。20世纪6070年代由于电子束、离子束和激光束进入工业领域,进入表面处理领域,各国开始进行开发性研究,使表面处理技术有突破性进展。到90年代形成了新的系统的表面工程技术,出现了表面工程学,极大地推动了各行各业科学技术的进步,各行业的进步又加速了表面工程技术本身的发展。2 表面形变强化工艺分类主要是利用机械方法使金属表面层发生塑性变形,从而形成高强度硬化层,常见的强化工艺有喷丸、滚压和冷挤压强化。表面形变强化方法简单,但对耐磨性影响比较小,因此得到广泛应用。2.1表面机械强化表面机械强化主要分为滚压强化、喷丸强化、
6、抛丸强化和内挤压强化。其中主要以滚压和喷丸强化为主。下面就这几种主要机械强化工艺的原理及应用进行简单介绍。2.1.1喷丸强化喷丸强化是广泛使用的一种在再结晶温度以下的表面强化方法, 它可显著提高抗弯曲疲劳、抗腐蚀疲劳、抗应力腐蚀疲劳、抗微动磨损和耐蚀点( 孔蚀) 能力, 具有操作简单、耗能少、效率高及适应面广等优点, 是金属材料表面改性的有效方法。喷丸强化是利用大量高速运动的珠丸打击零件表面,使表面产生冷硬层和残余压应力5。喷丸强化的效果与喷丸参数(丸子的速度和在零件上散布密度等)、零件材质和表面状态有关。对于材料强度高、零件表面应力集中、表面粗糙或有表面缺陷的零件,喷丸强化都有显著的效果。(
7、1)喷丸强化工艺的工作原理喷丸强化是一种严格控制的冷加工表面强化处理工艺。 其工作原理是: 利用球形弹丸高速撞击金属工件表面, 使之产生屈服, 形成残余压缩应力层。形成压缩应力层的目的是为了预防工件疲劳破坏, 把易产生疲劳破坏裂纹部位的抗应力转为压应力, 从而有效地控制裂纹的扩展。(2)喷丸强化的发展状况1908年,美国制造出了激冷钢丸,金属弹丸的出现不仅使喷砂工艺获得迅速了发展,而且导致了金属表面喷丸强化技术的产生。1929 年, 在美国由Zimmerli 等人首先将喷丸强化技术应用在弹簧的表面强化,取得了良好的效果。20世纪40年代,人们发现了喷丸处理可在金属材料表面上产生一种压缩应力层,
8、 可以起到强化金属材料、阻止裂纹在受压区扩展的作用。到了60年代,此工艺逐步应用于机械零件的强化处理上。70年代后期,该工艺已被广泛应用于汽车工业,并获得了较大的经济技术效益,如机车用变速器齿轮、发动机及其他齿轮均采用了喷丸强化工艺,大幅度提高了抗疲劳强度。进入80年代以后,喷丸处理技术在大多数工业部门,如飞机制造、铁道机车车辆、化工、石油开发、塑料模具、工程机械、农业部门等方面推广应用,到了90年代,其应用范围进一步扩大,如电镀前进行喷丸处理可防止镀层裂纹的发生。最近几年,随着工业技术的迅猛发展和需求,人们对这种操作简单、效果显著的表面处理技术给予了极大的关注, 开发了多种新工艺。(3)喷丸
9、强化的发展趋势伴随着现代工业的快速发展,对机械产品零件表面的性能要求越来越高,改善材料表面性能,延长零件使用寿命,节约资源,提高生产力以及减少环境污染已成为表面工程技术新的挑战6。作为表面工程技术分支的喷丸强化技术面对这些机遇和挑战,将在加强理论研究的基础上发展新技术、新方法、新工艺、新设备和设备控制技术。其主要研究方向是: 理论研究,即研究各种单一喷丸和复合喷丸的强化机理、喷丸提高零部件疲劳和接触疲劳强度的机制、喷丸过程力的作用形式及对表面( 变形层厚度、粗糙度等) 的影响,喷丸参数( 弹丸材质、硬度、直径等) 对喷丸强度的影响,喷丸使残余奥氏体转变为马氏体后材料的稳定性及耐磨性等;研究喷丸
10、工艺和其他强化工艺方法的有机结合;加大开发新型、高效、低耗的喷丸设备和弹丸属性对喷丸强化效果的影响;着力解决传统喷丸强化工艺由于表面粗糙度、绿色喷丸等方面存在的问题。2.1.2滚压强化滚压强化工艺是一种无切削加工的工艺,表面滚压可以显著地提高零件的疲劳强度, 并且降低缺口敏感性。(1)滚压强化原理利用特制的滚压工具,对零件表面施加一定压力,使零件表面层的金属发生塑性变形,从而提高表面的粗糙度和硬度,这种方法就叫滚压,又称无屑加工。表面滚压特别适用于形状简单的大零件,尤其是尺寸突然变化的结构的应力集中处,如火车轴的轴径等。表面滚压处理后,其疲劳寿命都有了显著提高。滚轮滚压加工可以加工圆柱形或锥形
11、的外表面和内表面以及曲线旋转体的外表面、平面、端面、凹槽和台阶轴的过渡圆角。滚压用的滚轮数目有1 、2 、3。若刚度工件较小,则需用2个或者3个滚轮在相对的方向上同时进行滚压,以免工件发生弯曲变形。(2)滚压强化的发展状况滚压强化技术是在1929年由德国人提出的,1933年在美国铁路上开始应用滚压方法,1938年前苏联将此技术应用于机车车轴轴颈。1950年美国在军用、民用飞机上大量应用孔挤压技术,提高干涉配合铆接、干涉配合螺接;1970年国内航空部门开始将冷挤压工艺应用于飞机制造及维修中。目前主要的滚压加工工具有硬质合金滚轮式滚压工具、滚柱式滚压工具、硬质合金YZ 型深孔滚压工具、圆锥滚柱深孔
12、滚压工具和滚珠式滚压工具。 通过滚压可以提高表面粗糙度24 级, 耐磨性比磨削后提高1.53 倍, 可以修正提高形状误差和表面粗糙度, 而且滚压过程操作方便、效率高、干净无污染。 其具有应用范围广泛,滚压后的零件使用寿命长等特点,适用于对粗糙度和硬度均有一定要求的零件表面上。这种方法主要应用在大型轴类、套筒类零件内、外旋转表面的加工,滚压螺钉、螺栓等零件的螺纹以及滚压小模数齿轮和滚花等,并取得了显著成果, 很好的提高了经济效益,如天津大学内燃机研究所的唐琦等人通过对370Q 型汽油机、376Q 型柴油机进行的曲轴负荷分析、强度估算及弯曲疲劳强度实验研究表明, 与未滚压曲轴相比较, 经圆角滚压的
13、曲轴疲劳强度增加了92.3% ,安全系数由1.18提高到2.28并大幅度提高曲轴疲劳强度;还有如柳州南方汽车缸套厂在对缸套进行滚压试验后发现同一材料、硬度和壁厚的气缸套,由原来的直槽改制成沉割槽,其破断力在原来基础上提高了35% 以上,技术指标得到显著增加,获得明显效果。通过大量试验研究和实践表明, 影响到滚压质量的因素主要有以下几种:工件材料的性质,硬度、塑性、金相组织,硬度越低,塑性越高,则滚压效果越好;预加工的表面状况,表面粗糙度、显微组织、几何形状精度;滚压工具的结构,特殊的加工类型需要相应的滚压工具才能更好的保证加工质量;滚压用量,滚压深度、进给量、滚压速度和滚压次数。(3)滚压强化
14、的发展趋势为获得特定的材料表面晶粒度、变形层厚度,应采用多大的滚压力、滚压速度以及滚压次数,目前没有这方面有指导意义的详细的试验数据或公式。目前的滚压技术一般只适用于回转体类和平面类零件,所以应完善滚压技术使得能适应零件形式的多样性, 提高其使用范围7。一般传统的滚压技术很难实现大变形,即使施加了比正常情况下高出几倍的压力,达3000N 甚至更高,也不能消除车削留下来的刀痕。目前国内企业采用曲轴滚压工艺强化技术较低,一般只能提高强度30%50% ,当需要大幅度提高强度时,还需有更好滚压强化工艺。2.1.3内挤压强化孔挤压是一种使孔的内表面获得形变强化的工艺措施,效果明显。由于其高的强化效果以及
15、简单的操作方法,使其被广泛应用于工业生产中。下面对孔挤压强化的原理及其发展状况进行分析讨论。(1)内挤压强化原理孔挤压是利用棒、衬套、模具等特殊工具,对零件孔或周边连续、缓慢、均匀地挤压,形成塑性变形的硬化层。塑性变形层内组织结构发生变化,引起形变强化,并产生残余压应力,降低了孔壁粗糙度,提高了材料疲劳强度和应力腐蚀能力。(2)内挤压强化的发展状况由于孔挤压强化效率高、效果好、方法简单,被广泛使用于高强度钢,合金结构钢、铝合金、钛合金以及高温合金等零件。被挤压孔的形状主要是圆孔、椭圆孔、长圆孔、台阶孔、埋头窝孔和开口孔。目前主要应用于以下几种类型:挤压棒挤压强化,孔壁上涂干膜润滑剂,施加力的方
16、式为拉挤或推挤,适用于大型零部件装配和维修;衬套挤压强化,孔内装有衬套,挤压棒用拉挤或推挤方式通过衬套孔,适用于各类零部件的装配和修理;压印模挤压强化,在圆孔或长圆孔周围用压印模挤压出同心沟槽,适用于大型零部件及蒙皮关键承力部位的孔压印;旋转挤压强化,使用有一定过盈量,经向镶有圆柱体的挤压头,旋转通过被挤压的孔,适用于起落架大直径管件和孔。由于内挤压特殊的高效而简单的强化工艺,使得内挤压强化工艺得到了一系列广泛的应用,并也取得了良好的效果。由于内挤压特殊的工艺性,要求一定要均匀、缓慢、连续地挤压孔,不允许有冲击和暂停的现象。2.2 表面热处理强化2.2.1 渗碳 为增加钢件表面的碳含量和形成一
17、定的碳浓度梯度,将钢件在渗碳介质中加热并保温,使碳原子渗入表层的化学热处理工艺称为渗碳。渗碳是将钢件加热到奥氏体状态,进行碳渗入及扩散,随后淬火并低温回火。其目的是改善表层及心部组织,提高表面硬度和耐磨性,增加抗疲劳强度1。几种常见的渗碳方法、特点及应用范围见下表:表2.1 常见渗碳方法的特点及应用范围Tab.2.1 Characteristics and application areas of common carburizing method 渗碳方法特点应用范围气体渗碳生产率高、操作方便、容易实现自动化连续生产,渗层质量好,但废气有污染大批量生产,应用最广液体渗碳加热速度快、生产周期短
18、,操作简单、小件、细长件、薄件渗碳,批量生产,应用很少固体渗碳渗碳周期长,劳动条件差,渗层碳含量不易控制,但不需要专用设备单件、小件、小批量生产,应用较少离子渗碳渗速快、质量好,节电与节气、无污染,但专用设备成本高重载和精密件深层渗碳,批量生产,应用正在扩大真空渗碳可以高温渗碳、渗速快,表层无氧化,质量好,显著改善劳动条件,但专用设备成本高,容易产生炭黑精密件,关键件,批量生产,应用正在扩大流态床渗碳传热快、渗速比气体法快,气氛容易控制或改变,有利于符合处理,可进行高浓度渗碳批量生产,开始应用高频加热气体渗碳利用高频加热高温渗碳,渗速快。炉外制备渗碳气体通入渗碳。可列入冷加工流水线生产、设备成
19、本较高只适用于单一品种生产,多品种渗碳质量难控制(1)渗碳的化学反应:钢渗碳一般在900950间进行,渗碳剂的种类多,渗碳的化学反应复杂。对于钢件气体渗碳,无论采用哪种渗碳剂,其主要渗碳气氛的组分为CO和CH4。CO的渗碳能力较弱,而CH4渗碳能力较强,产生活性C原子的反应,可选择下列四个独立反应方程表示,即2CO=CO2+C CH4=2H2+C CO+H2=H2O+C CO=(1/2)O2+C渗碳过程可归纳为三个过程:炉内渗碳介质化学反应,产生CO,CH4等渗碳组分。渗碳组分向钢表面扩散被吸附,并与钢件反应,产生活性炭原子渗入钢件表面,反应产物H2、CO2和 H2O 、O2等离开表面。碳原子
20、像钢件内部扩散,形成碳浓度梯度分布的渗碳层。渗碳过程中,碳原子被吸附反应的机理,目前有两种解释,一种是先形成Fe3C 薄层,又瞬息分解使碳碳溶入到奥氏体中;另一种解释是碳原子直接溶解于奥氏体中,达到饱和时,才形成Fe3C。后一种解释被多数人接受,因为形成化合物Fe3C是以改变铁的晶格方式进行,需要更大的能量,因此碳原子溶入固溶体应在形成Fe3C之选。但这并不排除钢中如有强碳化物形成元素时,碳与合金元素直接形成碳化物的可能性。(2)渗碳过程相关的重要参量碳势Cp。碳势是指表征含碳气氛在一定温度下,改变钢件表面碳含量的能力的参数。通常可用低碳钢箔(厚度0.1mm)在含碳气氛中的平衡含碳量来表示。钢
21、中碳活度aC。钢在渗碳过程中奥氏体中碳的饱和蒸汽压(pc)与相同温度下石墨标准态的饱和蒸汽压之比称为钢中碳的活度。它的物理意义是奥氏体中有效浓度。与气氛碳势(Cp)和钢件表面实际碳含量(Cs)之间的差值(Cp-Cs)之比为碳的传递系数(),它表征渗碳气-固相界面反应速度的常数,也称为碳的传递系数。碳传递系数与渗碳温度,渗碳介质及气氛组分等有关。碳的扩散系数。表征扩散过程速度的一个重要参量是扩散系数D。它的物理意义是,在单位时间内,单位面积上,单位浓度坡度情况下通过的物理数量(g),它的量纲是:cm/s或cm/d。影响扩散系数最主要的渗碳温度,如不考虑钢中碳与合金元素含量的影响,扩散系数D与温度
22、T(K)的关系可近似表达为D=D0e。渗碳温度为8001000时,碳在奥氏体中扩散系数可用下式近似计算。2.2.2 碳氮共渗在一定温度下将碳和氮同时(以碳为主)渗入处于奥氏体状态的钢件表层的化学热处理工艺称为碳氮共渗。碳氮共渗按处理温度不同,可分为低温碳氮共渗(780)、中温碳氮共渗(780880)和高温碳氮共渗(880),一般按钢件和工件服役条件等进行选择。碳氮共渗与渗碳相比,有以下特点:(1)氮原子渗入降低了渗层的临界点A1和A3温度,故可在较低的温度下进行碳氮 共渗。工件不易过热,通常共渗后就可直接淬火,工件畸变量减小。(2)氮使TTT曲线右移,提高了淬透性,允许在较缓和的冷却介质中淬火
23、。(3)氮降低了马氏体开始转变点Ms,因此渗层中残留奥氏体比较多。(4)碳氮原子的同时渗入,增加大碳的扩散系数,加快了碳原子的扩散速度。因而碳氮共渗的渗速较快,缩短了工艺周期。(5)碳氮共渗层的硬度,耐磨性与耐回火性及疲劳强度比渗碳层稍高,但其共渗层较浅,承载能力不及渗碳。2.2.3 渗金属及渗硼、渗硅 钢及合金工件加热到适当的温度,使金属元素扩散渗入表层的化学热处理工艺称为渗金属,又称表面合金化。它是使钢的表面层合金化,以使工件表面具有某些合金钢、特殊钢的特性,如耐热、耐磨、抗氧化、耐腐蚀等。生产中常用的有渗铝、渗铬、渗硼、渗硅等。 通俗的讲就是使一种或多种金属原子渗入金属工件表层内的化学热
24、处理工艺8。将金属工件放在含有渗入金属元素的渗剂中,加热到一定温度,保持适当时间后,渗剂热分解所产生的渗入金属元素的活性原子便被吸附到工件表面,并扩散进入工件表层,从而改变工件表层的化学成分、组织和性能。渗金属的方法主要有固体法(如粉末包装法、膏剂涂渗法等)、液体法(如熔盐浸渍法、熔盐电解法、热浸法等)和气体法。金属元素可单独渗入,也可几种共渗,还可与其他工艺(如电镀、喷涂等)配合进行复合渗。生产上应用较多的渗金属工艺有:渗铝、渗铬、渗锌、铬铝共渗、铬铝硅共渗、钴(镍、铁)铬铝钒共渗、镀钽后的铬铝共渗、 镀铂(钴)渗铝、渗层夹嵌陶瓷、铝-稀土共渗等。 渗硼能提高钢铁、非铁金属与合金的表面硬度、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 表面 强化 技术
链接地址:https://www.31ppt.com/p-3924771.html