直角三角形斜边上的中线的性质及其应用.doc
《直角三角形斜边上的中线的性质及其应用.doc》由会员分享,可在线阅读,更多相关《直角三角形斜边上的中线的性质及其应用.doc(6页珍藏版)》请在三一办公上搜索。
1、“直角三角形斜边上的中线”的性质及其应用 图1“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明一、有直角、有中点,连线出中线,用性质例1如图1,BD、CE是ABC的两条高,M是BC的中点,N是DE的中点试问:MN与DE有什么关系?证明你的猜想猜想:MN垂直平分DE.证明:如图:连接ME、MD,在RtBEC中,点M是斜边BC的中点,ME=BC,又NEND,直线MN是线段DE的垂直
2、平分线,NMDE即MN垂直平分DE.评析:题目中给出了三角形的两条高与两个中点,联想“直角三角形斜边上的中线等于斜边的一半”,问题便迎刃而解二、有直角、无中点,取中点,连线出中线,用性质BADCEF图2例2如图2,在RtABC中,C=900,ADBC,CBE=ABE,求证:DE=2AB分析:欲证DE=2AB,则可寻DE的一半,再让其与AB相等,取DE的中点F,连AF,则AF=FD=DE,可证得AFD,ABF均为等腰三角形,由此结论得证证明:DE的中点F,连AF,则AF=FD=DE,所以DAF=ADF,又因为ADBC,所以CBE=ADF,又因为CBE=ABE,所以ABF=AFB,所以AF=AB,
3、即DE=2ABBACDPMNK图3评析:本题是有直角、无中点的情况,这时要取直角三角形的斜边上的中点,再连结该点与直角顶点,然后用性质来解决问题三、有中点、无直角,造直角,用性质例3如图3,梯形ABCD中,ABCD,M、N是AB、CD的中点,ADC+BCD=2700,求证:MN=(AB-CD)证明:延长AD、BC交于P,ADC+BCD=2700,APB=900,连结PN,连结PM交DC于K,下证N和K重合,则P、N、M三点共线,PN、PM分别是直角三角形PDC、PAB斜边上的中线,PN=CN=DN=CD,PM=BM=DM=AB,PNC=2PDN=2A,PMB=PKC=2A,PNC=PKC,N、
4、K重合,MN=PM-PN=(AB-CD)评析:本题只有中点,而没有直角,这时要想方设法构造直角,应用性质,而条件中正好有角的关系“ADC+BCD=2700 ”,这样问题就易以解决了BACDEP图4O四、逆用性质解题例4如图4,延长矩形ABCD的边CB至E,使CE=CA,P是AE的中点求证:BPDP证明:如图3,连结BD交AC于点O,连结PO,四边形ABCD是矩形,AO=OC=OB=OD,PA=PE,PO=EC,EC=AC,PO=BD,即OP=OB=OD,BPDP评析:“直角三角形斜边上的中线等于斜边的一半”这个性质是众所周知的,而它的逆定理往往被大家所忽视,本题就是利用这个性质构造PBD,证B
5、D边的中线等于BD的一半请同学们试一试吧!BACDE图51如图5,ABC中,AB=AC,ABD=CBD,BDDE于D,DE交BC于E,求证:CD=BE2如图6,ABC中,B=2C,ADBC于D,M是BC的ACBDM图6中点,求证:AB=2DM1提示:结论中的BE是直角三角形的斜边,由BE应想到“直角三角形斜边上的中线等于斜边的一半”,故应取BE的中点F,连结DF,只需证明DC=DF,即证C=DFC2提示:取AB的中点N,连结DN、MN即可直角三角形斜边上中线性质的应用直角三角形斜边上中线的性质是直角三角形的一个重要性质,同时也是常考的知识点它为证明线段相等、角相等、线段的倍分等问题提供了很好的
6、思路和理论依据。下面谈谈直角三角形斜边上中线的性质及应用。一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半如图1,在RtBAC中,BAC=,D为BC的中点,则。2、性质的拓展:如图1:因为D为BC中点,所以,所以AD=BD=DC=,所以1=2,3=4,因此ADB=23=24,ADC=21=22。因而可得如下几个结论:直角三角形斜边上的中线将直角三角形分成两个等腰三角形;分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍二、性质的应用1、求值例1、(2004年江苏省苏州市中考)如图2,CD是RtABC斜边A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形 斜边 中线 性质 及其 应用
链接地址:https://www.31ppt.com/p-3920523.html