解三角形之正弦定理与余弦定理解析.doc
《解三角形之正弦定理与余弦定理解析.doc》由会员分享,可在线阅读,更多相关《解三角形之正弦定理与余弦定理解析.doc(6页珍藏版)》请在三一办公上搜索。
1、正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形.正余弦定理及三角形面积公式教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 (其中R是三角形外接圆的半径)2.变形:1) 2)化边为角:; 3)化边为角: 4)化角为边: 5)化角为边: 3. 利用正弦定理可以解决下列两类三角形的问题: 已知两个角及任意边,求其他两边和另一角; 例:已知角B,C,a, 解法:由A+B+C=180o ,求角A,由正弦定理 求出b与c 已知两边和其中边的对角,求其他两
2、个角及另一边。 例:已知边a,b,A, 解法:由正弦定理求出角B,由A+B+C=180o 求出角C,再使用正弦定理求出c边Ab4.ABC中,已知锐角A,边b,则时,B无解;或时,B有一个解;时,B有两个解。如:已知,求(有一个解)已知,求(有两个解)注意:由正弦定理求角时,注意解的个数。二.三角形面积1.2. ,其中是三角形内切圆半径.3. , 其中,4. ,R为外接圆半径5.,R为外接圆半径三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 2.变形: 注意整体代入,如:3 利用余弦定理判断三角形形状:设、是的角、的对边,则:若,所以
3、为锐角若若, 所以为钝角,则是钝角三角形4. 利用余弦定理可以解决下列两类三角形的问题:1) 已知三边,求三个角2) 已知两边和它们的夹角,求第三边和其他两个角考点解析题型1 正弦定理解三角形例题1 在ABC中,已知A=60,a=2,C=45,则C=例题2 在ABC中,A=,AC=2,BC=,则AB=变式训练1、 在ABC中,a,b,B45.求角A、C和边c2、 在ABC中,(1) 若a4,B30,C105,则b_(2) 若b3,c,C45,则a_(3) 若AB,BC,C30,则A_3、在ABC中,若A=60,BC=4,AC=4,则角B的大小为()A30B45C135D45或1354、在ABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 正弦 定理 余弦 解析

链接地址:https://www.31ppt.com/p-3915555.html