立体几何三视图问题分类汇总.doc
《立体几何三视图问题分类汇总.doc》由会员分享,可在线阅读,更多相关《立体几何三视图问题分类汇总.doc(16页珍藏版)》请在三一办公上搜索。
1、立体几何三视图问题分类(一)由空间图形画三视图1、(2014江西卷)一几何体的直观图如图,下列给出的四个俯视图中正确()解析由直观图可知,该几何体由一个长方体和一个截角三棱柱组成从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形答案B2、D【解析】 由正视图可排除A、B选项,由俯视图可排除C选项3、2011课标全国 在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,故侧视图选D.4、(2010广东理)6.如图1, ABC为三角形,/, 平面ABC且3= =AB,则多面体ABC
2、 - 的正视图(也称主视图)是【答案】D5.(2010北京)(5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为: 答案:C6、7.(2008年广东理5)将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )EFDIAHGBCEFDABC侧视图1图2BEABEBBECBED8如图所示,在正方体ABCDA1B1C1D1中,M、N分别是BB1、BC的中点,则图中阴影部分在平面ADD1A1上的正投影是( 正方体9.如图所示,E,F分别为正方体ABCDA1B1C1D1的面ADD1
3、A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是_(填序号)解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图;其在面ABB1A1与面DCC1D1上的正投影是图;其在面ABCD与面A1B1C1D1上的正投影也是,故错误答案10.(2013浙江高考文科T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm3【解题指南】根据几何体的三视图,还原成几何体,再求体积.【解析】选B.由三视图可知原几何体如图所示,所以.11. (2013湖南)已知正方体的棱长为1,
4、其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于( )A B.1 C. D.【解题指南】根据面积关系得出,侧视图就是正方体的一个对角面,则正视图也是一个对角面【解析】选D,根据条件得知正视图和侧视图一样,是正方体的一个对角面,故面积相等12、(2014新课标全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A6 B4C6 D4解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥ABCD,最长的棱为AD6,选C.13、(2014湖北卷)在如图所示的空间直角坐标系Oxyz中,一个四面体的
5、顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2)给出编号为的四个图,则该四面体的正视图和俯视图分别为()A和 B和C和 D和14、(2013全国)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()【解析】选A.由题意可知,该四面体为正四面体,其中一个顶点在坐标原点,另外三个顶点分别在三个坐标平面内,所以以zOx平面为投影面,则得到的正视图可以为选项A中的图.15、(2014安徽卷)一个多面体的三视图如图所示,则该多面体的表面
6、积为()A21 B18 C21 D18解析(1)由三视图可知该几何体是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分(如图所示),其表面积为S6462()221.16、一个空间几何体的三视图如图所示,则该几何体的表面积为()A48B328C488 D80解析:由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱,所以该直四棱柱的表面积为S2(24)4442424488.答案:C17、(2014辽宁卷)某几何体三视图如图所示,则该几何体的体积为()A82 B8 C8 D8直观图为棱长为2的正方体割去两个底面半径为1的圆柱,所以该几何体的体积为2321228.三棱柱
7、17、若一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积与体积 左视图俯视图主视图2 18、(2010福建)若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )A B2 C D6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选D19、2011辽宁 一个正三棱柱的侧棱长和底面边长相等,体积为2,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是_由俯视图知该正三棱柱的直观图为图16,其中M,N是中点,矩形MNC1C为左视图由于体积为2,所以设棱长为a,则a2sin60a2,解得a2.所以CM,故矩形MNC1C面
8、积为2.20、(2010陕西) 8.若某空间几何体的三视图如图所示,则该几何体的体积是B(A)2(B)1(C)(D)【答案】 B解析:本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱所以其体积为四棱柱21、(2010天津)一个几何体的三视图如图所示,则这个几何体的体积为 。【解析】由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半。22、2011广东 如图,
9、某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A6 B9 C12 D18【解析】 由三视图知该几何体为棱柱,h,S底33,所以V9.三棱锥23、(2014四川卷)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()A3 B2C. D1解析由俯视图可知,三棱锥底面是边长为2的等边三角形由侧视图可知,三棱锥的高为.故该三棱锥的体积V21.答案D24、(2010湖南)图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm【答案】4 25、2011北京卷 某四面体的三视图如图13所示,该四面体四个面的面积中最大的是()A8 B6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 视图 问题 分类 汇总
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3914354.html