概率论与数理统计第5章题库.doc
《概率论与数理统计第5章题库.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计第5章题库.doc(55页珍藏版)》请在三一办公上搜索。
1、第5章 大数定律和中心极限定律填空题 1、设随机变量的数学期望与方差都存在,则对任意的,有_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由切比雪夫不等式直接得到.2、设是相互独立的随机变量序列,存在,并且存在常数,使得,对于任意的, =_.答案:1 知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由切比雪夫大数定律直接得到.3、设是独立同分布的随机变量序列,并且数学期望和方差都存
2、在,且,则对于任意的,有=_.答案:1 知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由切比雪夫大数定律直接得到.4、设是重伯努利试验中事件发生的次数,是事件在每次试验中发生的概率,则对任意的,有=_.答案:1知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由伯努利大数定律直接得到.5、设是独立同分布的随机变量序列,并且具有数学期望 ,则依概率收敛到_.答案: 知识点:5.1 大数定律 参考
3、页: P113学习目标: 2难度系数: 1提示一:5.1大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由辛钦大数定律可知:如果是独立同分布的随机变量序列,并且具有数学期望 ,则对任意的,有,这表明,即则依概率收敛到.6、独立同分布的随机变量方差大于0,则当充分大时,其和的标准化变量近似地服从_.答案:标准正态分布 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 1提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:由林德伯格-列维中心极限定理知,不论原来服从什么分布,只要是独立同分布的随机变量序列,且方差为正,其和的标准化
4、变量均近似地服从标准正态分布.7、二项分布的极限分布是_.答案:正态分布 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 1提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:由棣莫佛-拉普拉斯中心极限定理直接得到正态分布是二项分布的极限分布.8、设随机变量的数学期望为8,方差为3,利用切比雪夫不等式估计概率 _.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由切比雪夫不等式有:.9、已知正常男性成人血液中, 每一毫升白细胞数平
5、均是7300, 均方差是700. 利用切比雪夫不等式估计每毫升白细胞数在52009400之间的概率不小于_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:设=每毫升白细胞数,则.由切比雪夫不等式有:.10、 设是次伯努利试验中事件出现的次数,为在每次试验中出现的概率, 则对任意,有_.答案:0 知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 2提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由伯努利大数定律,得:.11、设随机变量和
6、的数学期望均是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:.由切比雪夫不等式得:.12、设随机变量和的数学期望分布是2和5, 方差分别为1和4, 而相关系数为, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:.由切比雪夫不等式得:.13、设相互独立的随机变量和的数学期望分别
7、是2和, 方差分别为1和4, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:随机变量和相互独立,则有:,.由切比雪夫不等式得:.14、设随机变量的数学期望是, 方差分别为, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 1提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由切比雪夫不等式得:.15、设随机变量,其中为已知参数, 则根据切比雪夫不等式估计_.答案: 知识点
8、:5.1 大数定律 参考页: P113学习目标: 1难度系数: 2提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:,则由切比雪夫不等式得:.16、设随机变量,其中为已知参数, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 2提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:,则由切比雪夫不等式得:.17、设随机变量,其中为已知参数, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 2提示一:5.1 大数定律提示二:无提示
9、三:无提示四(同题解)题型:填空题题解:,则由切比雪夫不等式得:.18、设随机变量服从参数为的两点分布, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 2提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:服从参数为的两点分布,则由切比雪夫不等式得:.19、设随机变量服从参数为的指数分布, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 2提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:服从参数为的指数分布,则由切比雪夫不
10、等式得:.20、设随机变量相互独立, , 则根据列维林德伯格中心极限定理, 要使近似服从正态分布, 只要满足_.答案:具有相同的分布,相同的数学期望和方差 知识点:5.2 中心极限定理 参考页: P113学习目标: 3难度系数: 1提示一:5.2中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:由列维林德伯格中心极限定理的条件可知.21、设独立同分布的随机变量序列,且,那么依概率收敛于_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:独立同分布的随机变量序列,所以也是
11、独立同分布的随机变量序列,.所以由辛钦大数定律可知,依概率收敛于.22、设随机变量相互独立,且都服从参数为的指数分布,则_.答案: 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 3提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:相互独立,且都服从参数为的指数分布,有,由林德伯格列维中心极限定理知:.23、设随机变量相互独立,且都服从的均匀分布,则=_.答案: 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 3提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:相互独立,且都服从
12、的均匀分布,有,由林德伯格列维中心极限定理知:.24、设随机变量相互独立,且都服从标准正态分布,则=_.答案:1 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 3提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:相互独立,且都服从标准正态分布,有,由林德伯格列维中心极限定理知:.25、设随机变量相互独立,且都服从参数为的泊松分布,那么=_.答案:0 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:随机变量相互独立,且都服从参数
13、为的泊松分布,则有.由林德伯格列维中心极限定理知:.26、设随机变量相互独立,且都服从参数为的几何分布,那么=_.答案: 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:随机变量相互独立,且都服从参数为的几何分布,则有.由林德伯格列维中心极限定理知:.27、设随机变量,若由切比雪夫不等式有,则=_,=_.答案:3, 2 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:,则,所以有由切比
14、雪夫不等式得:,解得.28、设随机变量的密度函数为, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由题意得:,由切比雪夫不等式得:.29、设随机变量的密度函数为, 则根据切比雪夫不等式估计_.答案: 知识点:5.1 大数定律 参考页: P113学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:填空题题解:由密度函数的性质知,解得:.由题意得:,由切比雪夫不等式得:.30、设随机变量,且,相互独立. 令,则由中心
15、极限定理知的分布函数近似于_.答案: 知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:填空题题解:由题意知: , 且.由中心极限定理可知,当充分大时,.所以,的分布函数近似于.单项选择题 1设随机变量是独立同分布的随机变量,其分布函数为,则辛钦大数定律对此序列( ). (A)适用; (B)当常数取合适数值时适用; (C)无法判断; (D)不适用.答案: D知识点:5.1 大数定律 参考页: P113学习目标: 2难度系数: 4提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:选择题
16、题解: 辛钦大数定律成立的条件有两条:(1)随机变量序列独立同分布;(2)随机变量的数学期望存在.本题已知随机变量序列独立同分布,故只需验证数学期望即可. 随机变量的密度函数为: .数学期望为而可知数学期望不存在,即辛钦大数定律不满足. 故选D.2设随机变量是独立同分布的随机变量序列,且都服从参数为的指数分布,记为标准正态分布的分布函数,则( ). (A); (B); (C); (D)答案: C知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:选择题题解:随机变量相互独立,且都服从参数为的指数分布,
17、则有,.由林德伯格列维中心极限定理知:,即. 故选C.3设随机变量是相互独立的随机变量,且均满足参数为的两点分布,令,为标准正态分布的分布函数,则( ). (A)0; (B); (C); (D)1.答案: B知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:选择题题解:随机变量相互独立,且都服从参数为的两点分布,则有,.由林德伯格列维中心极限定理知:,则.故选B.4设随机变量是独立同分布的随机变量序列,且都服从参数为的指数分布,则当充分大时,随机变量的概率分布近似服从( ).(A); (B); (C
18、); (D).答案: B知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:选择题题解:随机变量相互独立,且都服从参数为的指数分布,则有,.由林德伯格列维中心极限定理知:当充分大时,随机变量的概率分布近似服从. 故选B.5设随机变量是独立同分布的随机变量,且其数学期望,则( ). (A)0; (B); (C); (D)1.答案: D知识点:5.2 中心极限定理 参考页: P116学习目标: 2难度系数: 4提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:选择题题解: 由辛钦大数定
19、律:对任意的,.已知,取,有. 又因为,所以. 故选D.计算题1. 设随机变量与的数学期望分别为1和3,方差分别为1和9,相关系数, 试利用切比雪夫不等式估计.答案:.知识点:5.1 大数定律 参考页: P116学习目标: 1难度系数: 3提示一:5.1 大数定律提示二:无提示三:无提示四(同题解)题型:计算题题解:.由切比雪夫不等式得:.2. 设某公路段过往车辆发生交通事故的概率为0.0001, 车辆间发生交通事故与否相互独立, 若在某个时间区间内恰有10万辆车辆通过, 试求在该时间内发生交通事故的次数不多于15次的概率的近似值.答案:0.9426.知识点:5.2 中心极限定理 参考页: P
20、116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:计算题题解:设在某时间内发生交通事故的次数为,则 , 由二项分布的性质知. 由棣莫佛-拉普拉斯中心极限定理知: .3. 设某学校有1000名学生, 在某一时间区间内每个学生去某阅览室自修的概率是0.05, 且设每个学生去阅览室自修与否相互独立. 试问该阅览室至少应设多少座位才能以不低于0.95的概率保证每个来阅览室自修的学生均有座位?.答案:62.知识点:5.2 中心极限定理 参考页: P116学习目标: 3难度系数: 2提示一:5.2 中心极限定理提示二:无提示三:无提示四(同题解)题型:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 题库
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3911127.html