最新(教师版)立体几何专题一:表面积体积计算.docx
《最新(教师版)立体几何专题一:表面积体积计算.docx》由会员分享,可在线阅读,更多相关《最新(教师版)立体几何专题一:表面积体积计算.docx(11页珍藏版)》请在三一办公上搜索。
1、 立体几何专题复习一:空间几何体的表面积与体积【高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题基础梳理1柱、锥、台和球的侧面积和体积面积体积圆柱S侧2rhVShr2h圆锥S侧rlVShr2hr2圆台S侧(r1r2)lV(S上S下)h(rrr1r2)h直棱柱S侧ChVSh正棱锥S侧ChVSh正棱台S侧(CC)hV(S上S下)h球S球面4R2VR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和(2)圆柱
2、、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图(2)等积法:等积法包括等面积法和等体积法等积法的前提是几何图形(或几何体)的面积(或体积)通过已
3、知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值考向一几何体的表面积【例1】(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为()A48 B328C488 D80审题视点 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为,所以该几何体的表面积为488.答案C 以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当
4、的分析,从三视图中发现几何体中各元素间的位置关系及数量关系【训练1】 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于()A. B2C2 D6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2136.答案D考向二几何体的体积【例2】(2011广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A18 B12 C9 D6审题视点 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解解析该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为,故
5、V339.答案C 以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解【训练2】 (2012东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于()A. B. C.8 D12 解析由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为222.答案A考向三几何体的展开与折叠【例3】(2012广州模拟)如图1,在直角梯形ABCD中,ADC90,CDAB,AB4,ADCD2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体DABC,如图2所示(1)求证:B
6、C平面ACD;(2)求几何体DABC的体积审题视点 (1)利用线面垂直的判定定理,证明BC垂直于平面ACD内的两条相交线即可;(2)利用体积公式及等体积法证明(1)证明在图中,可得ACBC2,从而AC2BC2AB2,故ACBC,取AC的中点O,连接DO,则DOAC,又平面ADC平面ABC,平面ADC平面ABCAC,DO平面ADC,从而DO平面ABC,DOBC,又ACBC,ACDOO,BC平面ACD.(2)解由(1)可知,BC为三棱锥BACD的高,BC2,SACD2,VBACDSACDBC22,由等体积性可知,几何体DABC的体积为. (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 教师版 立体几何 专题 表面积 体积 计算
链接地址:https://www.31ppt.com/p-3903008.html