抛物线及其标准方程教学实例分析.doc
《抛物线及其标准方程教学实例分析.doc》由会员分享,可在线阅读,更多相关《抛物线及其标准方程教学实例分析.doc(6页珍藏版)》请在三一办公上搜索。
1、 抛物线及其标准方程教学实例分析课例背景:授课时间:2011年11月15日授课班级:高二五班教学模式:“引导发现、讨论交流”的教学方法为主。本课为大庆市第十三中学高中部发展杯大赛本人参赛的一节课,本节课注重新课改的理念让学生成为课堂的主人。 课例介绍一、教材分析 1、教材所处的地位和作用我讲课的题目是抛物线及其标准方程,本节课是高中新课程人教A版数学选修21第2章第4节的内容,共分两课时, 本节是第一课时,本节内容是在学习椭圆、双曲线的基础上,通过类比的思想借助圆锥曲线第二定义的统一性展开的,同时,它还是学习抛物线几何性质的基础。因此本节内容起到一个承上启下的作用。二、教学目标分析1、知识与技
2、能:(1)了解抛物线的定义、几何图形和标准方程;(2)使用抛物线的定义求抛物线的标准方程,焦点坐标,准线方程。(3)了解圆锥曲线的简单应用。(在第2课时完成)2、过程与方法:(1)能初步根据抛物线的特征选择不同的解决问题的方法。(2)经历从具体情境中抽象出抛物线模型的过程。(3)体会抛物线在生活中的应用,学会在生活中用数学的方法去解释生活中的问题(第二课时完成)。3、情感态度价值观:(1)了解抛物线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。(2)通过设置丰富的问题情境,鼓励从多角度思考、探索、交流,激发的好奇心和主动学习的欲望;(3)通过抛物线的定义及其标准方程的学习,进一
3、步体会数形结合的思想, 养成利用数形结合解决问题的习惯。3、考纲要求:掌握抛物线的定义,标准方程。4、教学重点:1、掌握抛物线的定义及标准方程;2、进一步熟悉坐标法;根据已知条件用坐标法求抛物线的方程;3、会根据抛物线的标准方程,求出焦点坐标、准线方程,并画出其图形;4、会根据抛物线的焦点坐标或者准线方程,求出抛物线的标准方程。教学难点:抛物线的标准方程的推导;抛物线定义及焦点、准线等知识的灵活运用。三、学情及教法分析:教学对象分析与教材处理及教学方法:由于高二五班学生的数学基础普遍较好,学生思维活跃,抽象、推理能力较强,课堂气氛热烈的特点,本节借助powerpoint、几何画板课件,从形象、
4、动态的演示入手,增强课堂教学的直观性、趣味性,促进学生积极思维,能够在动态演示过程中化解教学难点,突出教学重点。教学中采用实验探索、类比法、图表法。实验探索:通过实验、演示,观察得出动点的轨迹是一条抛物线。类比法:由椭圆和双曲线的定义、标准方程、求法,类比出抛物线的定义、标准方程、类比法使得学生对于教材容易接受,可减轻学生负担。图表法:将抛物线定义、图象、标准方程、焦点坐标、准线方程列表,让学生填充表格,通过表格可以将它们对比,发现异同点,寻找规律,全面掌握所学知识。学习方法以“引导发现、讨论交流”的教学方法为主四、教学过程 本节课的教学实施过程分为6个环节: (1)设置情景,导入新课。 (2
5、)引导探究,获得新知。 (3)深入探索,完善体系 (4)指导应用,鼓励创新。 (5)小结概括,深化认识。 (6)布置作业,巩固新知 抛物线及其标准方程教学设计(1)复习回顾,导入新课。复习提问:借助圆锥曲线的统一性引入:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0e1时是椭圆,当e1时是双曲线,那么,当e=1时,它又是什么曲线?(说明:依据知识的逻辑体系,引入新课,比较自然,同时也说明今天的内容和椭圆、双曲线有着一种内在的必然联系,可以通过类比的思想加以学习。问题的提出,也利于激发学生的求知欲。要鼓励学生积极参与,积极思考,发挥学生的学习主体作用。)(2)引导探究,获得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线 及其 标准 方程 教学 实例 分析
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3900071.html