35kV电网继电保护设计毕业设计.doc
《35kV电网继电保护设计毕业设计.doc》由会员分享,可在线阅读,更多相关《35kV电网继电保护设计毕业设计.doc(33页珍藏版)》请在三一办公上搜索。
1、35kV电网继电保护设计学 生:刘梦雄指导老师:王丽丽(三峡电力职业学院)摘 要: 电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计
2、算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求
3、,给35KV的输电线路设计合适的继电保护。关键词:35kv继电保护 整定计算 故障分析 短路电流计算第一章 概 述1.1电力系统继电保护的作用输电线路、变压器、供电网络和用电设备组成了供用电系统。在运行过程中,供用电系统可能出现故障和不正常运行状态,最常见的故障是各种类型的短路,如三相短路、两相短路、两相接地短路、单项接地短路以及变压器、电机绕组的匝间短路等。发生故障的原因多种多样,主要有 雷击、倒塔、鸟兽跨接电气设备;设备设计、制造缺陷;安装、调试、运行、维护不当,误操作等。发生故障后,电流会突然增大,电压大幅度降低,会造成以下后果:(1)故障点通过很大的短路电流,引发电弧,使电气设备烧坏,
4、通过短路电流的无故障设备,在发热和电动力作用下损坏或降低使用寿命。(2)系统电压大幅度下降,用户的正常工作遭到破坏,甚至损坏用电设备,影响产品质量。(3)破坏电力系统运行的稳定性,引起系统振荡甚至使整个电力系统瓦解,导致大面积停电。 1.1.1继电保护的基本任务 电力系统继电保护装置是指能反应电力系统中电气元件发生故障或不正常运行状态而动作于断路器跳闸或发出信号的一种自动装置,继电保护装置的基本任务是:(1)当电力系统中某电气元件发生故障时,能自动,迅速,有选择的将故障元件从电力系统中切除,避免故障元件继续遭到破坏,使非故障元件迅速的恢复正常运行。(2)当系统中电气元件出现不正常运行状态时,能
5、及时反映 并根据运行维护的条件发出信号或跳闸。原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征,即可形成某种判据,从而构成某种原理的保护,且差别越明显,保护性能越好。1.2电力系统继电保护技术与继电保护装置1.2.1统继电保护技术要求 (1)起动失灵的保护为线路、过电压和远方跳闸、母线、短引线、变压器(高抗)的电气量保护。 (2)断路器失灵保护的动作原则为:瞬时分相重跳本断路器的两个跳闸线圈;经延时三相跳相邻断路器的两个跳闸线圈和相关断路器(起动两套远方跳闸或母差、变压器保护),并闭锁重合闸。 (3)失灵保护应采用分相和三相起动回路,起动回路为瞬时复归的保护出口接点(包括与本
6、断路器有关的所有电气量保护接点)。 (4)断路器失灵保护应经电流元件控制实现单相和三相跳闸,判别元件的动作时间和返回时间均不应大于20ms。 (5)重合闸仅装于与线路相联的两台断路器保护屏(柜)内,且能方便地整定为一台断路器先重合,另一台断路器待第一台断路器重合成功后再重合。(6)断路器重合闸装置起动后应能延时自动复归,在此时间内断路器保护应沟通本断路器的三跳回路,不应增加任何外回路。(7)闭锁重合闸的保护为变压器、失灵、母线、远方跳闸、高抗、短引线保护。(8)短引线保护可采用和电流过流保护方式,也可采用差动电流保护方式。 (9)短引线保护在系统稳态和暂态引起谐波分量和直流分量影响下不应误动作
7、(10)短引线保护的线路或变压器隔离刀闸辅助接点开入量不应因高压开关场强电磁干扰而丢失信号。对隔离刀闸辅助接点的通断应有监视指示。1.2.2继电保护装置的组成无论按什么原因构成继电保护,其装置结构都由三个部分组成,即测量比较部分、逻辑判断部分和执行部分。1.2.3继电保护装置的分类按保护所起的作用分类可分为:主保护,后备保护,辅助保护等。主保护是指满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护 元件故障的保护。后备保护是指当主保护或断路器据动时用来切除故障的保护。辅助保护是为了补充主保护和后备保护的性能的简单保护。1.3继电保护的基本要求根据继电保护的任务,对动作于跳闸的继电保护要
8、求其具有选择性、速动性、灵敏性和可靠性。这些要求是相辅相成,相互制约的,需要根据具体的使用环境进行协调保证。 选择性:系统中发生故障时,保护装置应有选择地切除故障部分,非故障部分继续运行; 快速性“短路时,快速切除故障这样可以 a.缩小故障范围,减少短路电流引起的破坏; b.减少对用记的影响; c.提高系统的稳定性; 灵敏性:指继电保护装置对保护设备可能发生的故障和正常运行的情况,能够灵敏的感受和灵敏地作,保护装置的灵敏性以灵敏系数衡量。 可靠性:对各种故障和不正常的运方式,应保证可靠动作,不误动也不拒动,即有足够的可靠。以上对继电保护装置的四个基本要求是分析研究继电保护性能的基础,他们之间紧
9、密相连,互相之间既有矛盾,又可以在一定条件下统一。1.4电网继电保护的设计原则1.4.1 35kV线路保护配置原则 (1)每回35kV线路应按近后备原则配置双套完整的、独立的能反映各种类型故障、具有选相功能全线速动保护 (2)每回35kV线路应配置双套远方跳闸保护。断路器失灵保护、过电压保护和不设独立电抗器断路器的500kV高压并联电抗器保护动作均应起动远跳。 (3)根据系统工频过电压的要求,对可能产生过电压的500kV线路应配置双套过电压保护。 (4)装有串联补偿电容的线路,应采用双套光纤分相电流差动保护作主保护 (5)对电缆、架空混合出线,每回线路宜配置两套光纤分相电流差动保护作为主保护,
10、同时应配有包含过负荷报警功能的完整的后备保护。 (6)双重化配置的线路主保护、后备保护、过电压保护、远方跳闸保护的交流电压回路、电流回路、直流电源、开关量输入、跳闸回路、起动远跳和远方信号传输通道均应彼此完全独立没有电气联系。 (7)双重化配置的线路保护每套保护只作用于断路器的一组跳闸线圈。 (8)线路主保护、后备保护应起动断路器失灵保护。1.4.2 35kV母线保护配置原则 (1)每条500kV母线按远景配置双套母线保护,对500kV一个半断路器接线方式,母线保护不设电压闭锁元件。 (2)双重化配置的母线保护的交流电流回路、直流电源、开关量输入、跳闸回路均应彼此完全独立没有电气联系。 (3)
11、每套母线保护只作用于断路器的一组跳闸线圈。 (4)母线侧的断路器失灵保护需跳母线侧断路器时,通过起动母差实现。1.4.3 35KV断路器保护配置原则 (1)一个半断路器接线的500kV断路器保护按断路器单元配置,每台断路器配置一面断路器保护屏(柜)。 (2)当出线设有隔离开关时,应配置双套短引线保护。 (3)重合闸沟三跳回路在断路器保护中实现。 (4)断路器三相不一致保护应由断路器本体机构完成。 (5)断路器的跳、合闸压力闭锁和压力异常闭锁操作均由断路器本体机构实现,分相操作箱仅保留重合闸压力闭锁回路。(6)断路器防跳功能应由断路器本体机构完成。1.4.4 继电保护技术发展前景随着电力系统的飞
12、速发展和电子技术、计算机技术、通信技术的进步,继电保护技术有了长足的发展。当前国内外继电保护技术发展的趋势为计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。我国从20世纪0年代末开始计算机继电保护的研究,从90年代开始我国继电保护技术已进入了微机保护的时代,进入21世纪,随着微型计算机和计算计算的迅猛发展,加之微机保护装置的巨大优越性和潜力,可以预见,微机保护将成为电力系统保护、监控、通信、调度综合自动化系统的重要组成部分。继电保护计算未来趋势是向计算机化,网络化,智能化。保护、控制、测量和数据通信一体化发展。 第二章 系统中各元件的主要参数计算2.1 标幺制及标幺值计算方法
13、所谓标幺制,就是把各个物理量均用标幺制来表示的一种相对单位制2.1.1 标幺制的概念 标幺制(per unit)电路计算中各物理量和参数均以其有名值与基准值的比值表示无量纲体制。例如物理量A,有其相应基准值AB,则A的标幺值A*A/AB。2.1.2标么值的折算 进行电力系统计算时,除采用有单位的阻抗、导纳、电压、电流、功率等进行运算外,还可采用没有单位的阻抗、导纳、电压、电流、功率等的相对值进行运算.前者称有名制,后者称标么制.标么制之所以能在相当宽广的范围内取代有名制,是由于标么制具有计算结果清晰、便于迅速判断计算结果的正确性、可大量简化计算等优点。 标么值=实际有名值(任意单位)/基准值(
14、与有名值同单位)对于直接电气联系的网络,在制订标么值的等值电路时,各元件的参数必须按统一的基准值进行归算.由于各元件的额定值可能不同,因此,必须把不同基准值的标么阻抗换算成统一基准值的标么值.现统一选定的基准电压和基准功率分别为V和S,则电抗的实际有名值换算成标么值,即在工程计算中规定,各个电压等级都以其平均额定电压V作为基准电压.根据我国现行的电压等级,各级平均额定电压规定为3.15, 6.3, 10.5, 15.75, 37, 115, 230, 345, 525KV2.2双绕组变压器的参数计算 变压器的参数一般是指其等值电路中的电阻RT,电抗XT,电导GT和电纳BT ,变压器的变比K。根
15、据铭牌上所给的短路损耗PS,短路电压VS%,空载损耗PO,空载电流IO%。前两个数据由短路试验得到,用以确定RT和XT;后两个数据由空载试验得到,用以确定GT和BT。 电阻RT:变压器作短路试验时,将一侧绕组短接,在另一侧绕组施加电压,使短路绕组的电流达到额定值.由于此时外加电压较小,相应的铁耗也小,可以认为短路损耗即等于变压器通过额定电流时原、副方绕组电阻的总损耗.在电力系统计算中,常用变压器三相额定容量和额定线电压进行参数计算,则公式为:RT=PSKWVN2KV103/SN2KVA 电抗XT: 当变压器通过额定电流时,在电抗上产生的电压降的大小,可以用额定电压的百分数表示,对于大容量变压器
16、,其绕组电阻比电抗小得多,则公式:XT=VS%VN2KV103/100/SNKVA 电导GT:变压器的电导是用来表示铁芯损耗的.由于空载电流相对额定电流来说是很小的,绕组中的铜耗也很小,所以近似认为变压器的铁耗就等于空载损耗,则公式为:GTS=P0KW10-3/VN2KV 电纳BT: 变压器的电纳代表变压器的励磁功率.变压器空载电流包含有功分量和无功分量,与励磁功率对应的是无功分量.由于有功分量很小,无功分量和空载电流在数值上几乎相等.BTS=I0%SNKVA10-3/100/VN2KV变压比KT: 在三相电力系统计算中,变压器的变压比通常是指两侧绕组空载线电压的比值.对于星形和三角形接法的变
17、压器,变压比与原副方绕组匝数比相等;对于星三角形接法的变压器,变压比为原副方绕组匝数比的倍.根据电力系统运行调节的要求,变压器不一定工作在主抽头上,因此,变压器运行中的实际变比,应是工作时两侧绕组实际抽头的空载线电压之比2.3绕组变压器的参数计算 三绕组变压器等值电路中的参数计算原则与双绕组变压器的相同,下面分别确定各参数的计算公式。2.3.1 电阻参数计算 电阻R1,R2,R3:为了确定三个绕组的等值阻抗,要有三个方程,为此,需要有三种短路试验的数据.三绕组变压器的短路试验是依次让一个绕组开路,按双绕组变压器来作.通过查手册可得短路损耗分别为,则有 PS1=1/2(PS(1-2)+PS(3-
18、1)-PS(2-3) PS2=1/2(PS(1-2)+PS(2-3)-PS(3-1) PS3=1/2(PS(2-3)+PS(3-1)-PS(1-2) 求出各绕组的短路损耗后,便可导出双绕组变压器计算电阻相同形式的算式, 即:Ri=PsiKWVN2KV103/SN2KVA 2.3.2电抗参数计算 电抗X1,X2,X3:和双绕组变压器一样,近似地认为电抗上的电压降就等于短路电压.在给出短路电压力 后,与电阻的计算公式相似,各绕组的短路电压为 VS1%=1/2(VS(1-2)%+VS(3-1)%-VS(2-3)%) VS2%=1/2(VS(1-2)%+VS(2-3)%-VS(3-1)%) VS3%=
19、1/2(VS(2-3)%+VS(3-1)%-VS(1-2)%)各绕组的等值电抗为:Xi=Vsi%VN2KV103/100/SNKVA2. 4输电线路参数的计算 输电线路的参数有四个:反映线路通过电流时产生有功功率损失效应的电阻;反映载流导线周围产生磁场效应的电感;反映线路带电时绝缘介质中产生泄漏电流及导线附近空气游离而产生有功功率损失的电导;反映带电导线周围电场效应的电容。输电线路的这些参数通常可以认为是沿全长均匀分布的,每单位长度的参数为r、x、g 及b.当线路长为l(km)时,R=rl;X=xl;G=gl;B=bl由于沿绝缘子的泄漏很小;可设G=0。第三章 中性点接地的选择3.1 35KV
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 35 kV 电网 保护 设计 毕业设计
链接地址:https://www.31ppt.com/p-3896299.html