毕业设计(论文)车牌号码识别仿真.doc
《毕业设计(论文)车牌号码识别仿真.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)车牌号码识别仿真.doc(25页珍藏版)》请在三一办公上搜索。
1、本科毕业设计(论文)( 2010 届 )题 目:车牌号码识别仿真 分 院:电子信息分院专 业:电子信息工程班 级:06电子本1姓 名:学 号:指导老师:完成时间:2010年4月摘 要车牌识别系统在交通的智能监视和管理中有着重要的应用,近几年发展非常迅速。基于图像和字符识别技术的车牌字符识别系统也是目前国内外模式识别应用研究领域的一个热点。尽管车牌的先验知识比较丰富,但是在复杂的背景下,车牌中的字符识别仍然比较困难。目前的车牌识别系统大多是针对简单场景、单一车牌。车牌字符识别系统的关键技术包括数字图像处理、车牌定位、车牌字符分割和字符识别技术。本文对已定位好的车牌进行图像位图读取、图像二值化、字
2、符分割、提取字符特征、BP神经网络设计等模块进行了初步的研究。在字符分割方面,分析了牌照图像二值化与标准归一化以及几何校正的各种算法。借助牌照字符固定宽度、间距的固定比例关系等先验知识实现字符的分割。在特征提取方面,将字符归一化,再采用13特征法进行字符特征提取。在字符识别方面,分析比较了常用的字符识别方法。在此基础上详细分析基于BP神经网络的识别方法。实验结果证明,所采用的BP神经网络具有良好的性能满足在复杂环境下实时识别车牌的要求,具有一定的理论和实际意义。关键词:车牌字符识别;特征提取;BP神经网络;MATLAB ABSTRACTLicense plate recognition sys
3、tem has important applications in the intelligent traffic monitoring and management developed rapidly in recent years. Based on image and character recognition technology license plate recognition system pattern recognition at home and abroad is also a hot field of applied research. Although the lic
4、ense plate of the prior knowledge rich, but in a complex background, the license plate of the character recognition is still more difficult. Most of the current license plate recognition system is a simple scenario for a single plate. The key technologies of license plate recognition system include
5、digital image processing, license plate location, license plate character segmentation technology. This article has been positioning for a good license plate reads the bitmap image, image binarization, character segmentation, feature extraction of characters, BP neural network design module for a mo
6、re detailed study.In the character segmentation area. Analyze of the license plate image binarization with the standard normalization and geometric correction algorithms. With fixed-width character license, a fixed proportion of the relationship between the pitch prior knowledge to achieve segmentat
7、ion of characters.In feature extraction. The character normalization, again using 13 features of character feature extraction method.In character recognition, analyze and compared of the common character recognition. On the basis of this detailed analysis based on BP neural networks recognition. The
8、 results show that BP neural network used good performance in a complex environment to meet real-time identification license plate requirements, with some theoretical and practical significance. Keywords:License plate character recognition;Feature Extraction;BP neural network; MATLAB.目 录摘 要IABSTRACT
9、II1 绪论11.1 课题背景11.2 国内外研究现状22 图像的预处理42.1 图像的二值化42.2 牌照上下边框和铆钉的去除52.3 车牌字符细化52.4本章小结63 车牌字符分割74 车牌字符特征提取94.1字符常用的特征提取方法94.2十三点网格特征提取方法105 车牌字符的识别115.1 字符识别简介115.2 基于BP神经网络的字符识别125.3BP神经网络的设计135.3.1 输入层神经元个数135.3.2 隐含层神经元数目135.3.3 输出层神经元个数135.3.4 传递函数的选择145.3.5 BP网络的参数设置145.3.6 BP神经网络的创建145.4 BP神经网络的运
10、用186 结论19致谢20参考文献211 绪论1.1 课题背景近几年,我国道路交通迅猛发展随之也带来了对交通管理自动化的迫切需求。车牌自动识别的研究与开发一直是现代化交通发展中倍受关注的问题,也是制约交通系统智能化、现代化的重要因素。智能交通系统己成为当前交通管理发展的主要方向。而车牌识别技术作为智能交通系统的核心,起着举足轻重的作用。车牌自动识别系统具有广泛的应用范围,主要应用于:高速公路收费、监控管理;小区、停车场管理;城市道路监控、违章管理;车牌登录、验证;车流统计、安全管理等。车牌自动识别系统应用于这些系统,可以解决通缉车辆的自动稽查问题,可以解决车流高峰期因出入口车流瓶颈造成的路桥卡
11、口、停车场交通堵塞问题,可以解决因工作人员作弊造成的路桥卡口、高速公路、停车场应收款流失的问题,还可以以最简单的方式完成交通部门的车辆信息联网,解决数据统计自动化,模糊查询的问题。车牌自动识别系统可安装于公路收费站、停车场、十字路口等交通关卡处,其具体应用可概括为:交通监控利用车牌识别系统的摄像设备,可以直接监视相应路段的交通状况,获得车辆密度、队长、排队规模等交通信息防范和观察交通事故。它还可以同雷达测速器或其他的检测器配合使用,以检测违犯限速值的车辆。当发现车辆超速时,摄像机获取该车的图像,并得到该车的牌照号码,然后给该车超速的警告信号。交通流控制指标参量的测量为达到交通流控制的目标,一些
12、交通流指标的测量相当重要。该系统能够测量和统计很多交通流指标参数,如总的服务流率,总行程时间,总的流入量流出量,车型及车流组成,日车流量,小时/分钟车流量,车流高峰时间段,平均车速,车辆密度等。这也为交通诱导系统提供必要的交通流信息。高速公路上的事故自动测报这是由于该系统能够监视道路情况和测量交通流量指标,能及时发现超速、堵车、排队、事故等交通异常现象。对养路费交纳、安全检查、运营管理实行不停车检查根据识别出的车牌号码从数据库中调出该车档案材料,可发现没及时交纳养路费的车辆。另外,该系统还可发现无车牌的车辆。若同车型检测器联用,可迅速发现所挂车牌与车型不符的车辆。车辆定位由于能自动识别车牌号码
13、,因而极易发现被盗车辆,以及定位出车辆在道路上的行驶位置。这为防范、发现和追踪涉及车辆的犯罪,保护重要车辆(如运钞车)的安全有重大作用,从而对城市治安及交通安全有重要的保障作用。车牌自动识别系统拥有广阔的应用前景,但若在每个街口都装配一套全新的车辆探测器的硬件系统则投资巨大,所以急需一个纯软件实行的车牌自动识别系统来最大限度的减少费用,而纯软件的设计,不仅投资小而且灵活性高,适合我国的国情。1.2 国内外研究现状从20世纪90年代初,国外就已经开始了对汽车牌照自动识别的研究,其主要途径就是对车牌的图像进行分析,自动提前车牌信息,确定汽车牌号。在各种应用中,有使用模糊数学理论也有用神经元网络的算
14、法来识别车牌中的字符,但由于外界环境光线变化、光路中有灰尘、季节环境变化及车牌本身比较模糊等条件的影响,给车牌的识别带来较大的困难。国外的相关研究有:J Barroso提出的基于扫描行高频分析的方法;Lancaster IT提出的类字符分析方法等。为了解决图像恶化的问题,目前国内外采用主动红外照明摄像或使用特殊的传感器来提高图像的质量,继而提高识别率,但系统的投资成本过大,不适合普遍的推广。车牌识别系统中的两个关键子系统是车牌定位系统11和车牌字符识别系统。关于车牌定位系统的研究,国内外学者已经作了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影
15、响定位准确度的潜在因素。为此,近年来不少学者针对车牌本身的特点,车辆拍摄的不良现象及背景的复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和实时性提出更高的要求。因而进一步加深车牌定位的研究是非常必要的。车牌字符识别是在车牌准确定位的基础上,对车牌上的汉字、字母、数字进行有效确认的过程,其中汉字识别是一个难点,许多国外的LPR系统也往往是因为汉字难识而无法打入中国市场,因而探寻好的方法解决字符的识别也是至关重要的。目前己有的方法很多,但其效果与实际的要求相差得很远,难以适应现代化交通系统高速度、快节奏的
16、要求。因而对字符识别的进一步研究也同样具有紧迫性和必要性。从实用产品来看,如以色列的HiTech公司研制的多种See/Car system,适应于几个不同国家的车牌识别,就针对中国格式车牌的See/Car system而言,它不能识别汉字,且识别率有待提高。新加坡Optasia公司的VLPRS产品,适合于新加坡的车牌,另外日本、加拿大、德国、意大利、英国等西方发达国家都有适合于本国车牌的识别系统。我国的实际情况有所不同,国外的实际拍摄条件比较理想,车牌比较规范统一,而我国车牌规范不够不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且位数不统一,对处理造成了一定的困难。在待处理的车牌图像
17、中就有小功率汽车使用的蓝底白字牌照,大功率汽车所用的黄底黑字牌照,军车和警车的白底黑字,红字牌照,还有国外驻华机构的黑底白字牌照等。就位数而言,有七位数字的,有武警车九位数字的,有军车前两位字符上下排列的等,所以也造成了处理的难度。国内做得较好的产品主要是中科院自动化研究所汉王公司的“汉王眼”,此外国内的亚洲视觉科技有限公司、深圳市吉通电子有限公司、中智交通电子系统有限公司等都有自己的产品,另外西安交通大学的图像处理与识别研究室、上海交通大学的计算机科学与工程系、清华大学、浙江大学等都做过类似的研究。通常处理时为了提高系统的识别率,都采用了一些硬件的探测器和其他的辅助设备如红外照明等,其中“汉
18、王眼”就是采用主动红外照明和光学滤波器来减弱可见光的不可控制影响,减少恶劣气候和汽车大小灯光的影响,另外还要求在高速公路管理窗口到“汉王眼”识别点埋设两条线路管道,一条管道铺设220伏50赫兹1安培的交流供电线路;另一条管道铺设触发信号线路和汉王眼与管理计算机的通讯线路,投资巨大,不适合于大面积的推广。另外,还有两种专门的技术被用于车牌的识别中,条形码识别技术和无线射频技术。条形码识别要求预先在车身上印刷条形码,在系统的某一固定位置上安装扫描设备,通过扫描来读取条形码,以达到识别车辆的目的。无线射频技术要求在车内安装标示卡,在系统某一位置安装收发器等装置,通过收发器来接受标示卡的信号,从而识别
19、出经过的车辆。显然,这两种技术更难以推广。从目前一些产品的性能指标可以看出,车牌识别系统的识别率和识别速度有待提高。现代交通的飞速发展以及车牌识别系统应用范围的日益拓宽给车牌识别系统提出了更高的要求。因此,研究高速、准确的定位与识别算法是当前的主要任务,而图像处理技术的发展与摄像设备、计算机性能的提高都会促进车牌识别技术的发展,提高车牌识别系统的性能。2 图像的预处理2.1 图像的二值化二值图像是指整幅图像画面内仅黑、白二值的图像。在数字图像处理中,二值图像占有非常重要的地位。这是因为,一方面,有些需要处理的如文字图像、指纹图像、工程图纸等图像本身是二值的;另一方面,在某些情况下即使图像本身是
20、有灰度的,我们也设法使它变成二值图像再进行处理(即灰度图像的二值化)。这是考虑到在实用的图像处理系统中,要求处理的速度高、成本低、信息量大的浓淡图像处理的花销太大。此外,二值化后的图像能够用几何学中的概念进行分析和特征描述,比灰度图像优势大的多。在实际的车牌处理系统中。进行图像二值变换的关键是要确定合适的阈值,使得字符与背景能够分割开来,而且二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。同时,车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。二值化的关键是要找到合适的阈值t来区分对象和背景。设原灰度图像为f(x
21、,y),二值化后的图像为g(x,y),二值化的过程表示如下:g(x,y)= (2-1)阈值t的选择是关键,在这里运用了matlab图像处理工具箱(image processing toolbox)中的graythresh函数去求阈值,再运用二值图像函数im2bw将图像二值化。此时图像就是一个只含有0和1的矩阵,这对后面的图片操作方便了很多2。例如:I=imread (2.bmp); Level=graythresh (I);BW=im2bw (I, level);Figure; imshow (BW);程序运行结果如图2.1所示。Level是阈值,取值在01之间。当输入图像的亮度小于level
22、时,对应的输出图像的像素值为0,其他地方均为1。图2.1 二值化后的车牌将车牌图像进行二值化后,图像仅黑、自二值。白色像素点(灰度值255)取1,黑色像素点(灰度值0)取0。2.2 牌照上下边框和铆钉的去除在实际处理中,我们面对的要识别的牌照字符背景非常复杂,存在较大的干扰、噪声。当车牌的二值图像统一为黑底白宇后,会有汽车保险杠与牌照四条边框的残缺图像以及牌照上两个铆钉干扰的一个区域。借助一些先验知识,采取一些图像处理的方法可以从上述复杂背景中去除干扰。因为国内车牌的规格都是统一的,固定车牌的铆钉位置也是一样的,所以我只需在铆钉的位置上赋值0,原来的铆钉区域就变成黑色了。例如:BW (1:2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 车牌 号码 识别 仿真

链接地址:https://www.31ppt.com/p-3882590.html