《正方形判定练习题及答案.doc》由会员分享,可在线阅读,更多相关《正方形判定练习题及答案.doc(18页珍藏版)》请在三一办公上搜索。
1、 正方形的判定一选择题(共8小题)1已知四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A选 B选 C选 D选2下列说法中,正确的是()A相等的角一定是对顶角B四个角都相等的四边形一定是正方形C平行四边形的对角线互相平分D矩形的对角线一定垂直3下列命题中是假命题的是()A一组对边平行且相等的四边形是平行四边形B一组对边相等且有一个角是直角的四边形是矩形C一组邻边相等的平行四边形是菱形D一组邻边相等的矩形是正方形4已知四边形ABCD是平行四边形,下列结论中不正确的有()当
2、AB=BC时,它是菱形;当ACBD时,它是菱形;当ABC=90时,它是矩形;当AC=BD时,它是正方形A1组 B2组 C3组 D4组5四边形ABCD的对角线AC=BD,ACBD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A正方形 B菱形 C矩形 D任意四边形6如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()AAB=AD且ACBDBAB=AD且AC=BD CA=B且AC=BDDAC和BD互相垂直平分7下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平分的四边形是平行四边形D对角
3、线互相垂直平分的四边形是正方形8如图,在ABC中,ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()ABC=ACBCFBFCBD=DFDAC=BF二填空题(共6小题)9能使平行四边形ABCD为正方形的条件是_(填上一个符合题目要求的条件即可)10如图,在RtABC中,C=90,DE垂直平分AC,DFBC,当ABC满足条件_时,四边形DECF是正方形 (要求:不再添加任何辅助线,只需填一个符合要求的条件)11如图,菱形ABCD的对角线相交于点O,请你添加一个条件:_,使得该菱形为正方形12如图,在四边形ABCD中,A
4、B=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_13已知四边形ABCD中,A=B=C=90,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_14要使一个菱形成为正方形,需添加一个条件为_三解答题(共8小题)15已知:如图,ABC中,ABC=90,BD是ABC的平分线,DEAB于点E,DFBC于点F求证:四边形DEBF是正方形16如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PMAD,PNCD,垂足分别为M,N(1)求证:ADB=CDB;(2)若ADC=90,求证:四边
5、形MPND是正方形17如图,在RtABC中,ACB=90,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由18如图,在ABC中,点D、E分别是边AB、AC的中点,将ADE绕点E旋转180得到CFE(1)求证:四边形ADCF是平行四边形(2)当ABC满足什么条件时,四边形ADCF是正方形?请说明理由19如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧
6、交于M、N两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作DEAC于点E,DFBC于点F(1)求证:AEDBFD;(2)若AB=2,当CD的值为_时,四边形DECF是正方形20如图,AB是CD的垂直平分线,交CD于点M,过点M作MEA C,MFAD,垂足分别为E、F(1)求证:CAB=DAB;(2)若CAD=90,求证:四边形AEMF是正方形21如图,ABC中,点O是边AC上一个动点,过O作直线MNBC,设MN交ACB的平分线于点E,交ACB的外角平分线于点F(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处时,且ABC满足什么条件时,四边形A
7、ECF是正方形?(3)当点O在边AC上运动时,四边形BCFE_是菱形吗?(填“可能”或“不可能”)22已知:如图,ABC中,点O是AC上的一动点,过点O作直线MNAC,设MN交BCA的平分线于点E,交BCA的外角ACG的平分线于点F,连接AE、AF(1)求证:ECF=90;(2)当点O运动到何处时,四边形AECF是矩形?请说明理由;(3)在(2)的条件下,ABC应该满足条件:_,就能使矩形AECF变为正方形(直接添加条件,无需证明)正方形的判定参考答案与试题解析一选择题(共8小题)1已知四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件
8、后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A选B选C选D选考点:正方形的判定;平行四边形的性质分析:要判定是正方形,则需能判定它既是菱形又是矩形解答:解:A、由得有一组邻边相等的平行四边形是菱形,由得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由得有一个角是直角的平行四边形是矩形,由得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由得有一组邻边相等的平行四边形是菱形,由得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由得有
9、一个角是直角的平行四边形是矩形,由得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意故选:B点评:本题考查了正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个矩形有一个角为直角还可以先判定四边形是平行四边形,再用1或2进行判定2下列说法中,正确的是()A相等的角一定是对顶角B四个角都相等的四边形一定是正方形C平行四边形的对角线互相平分D矩形的对角线一定垂直考点:正方形的判定;对顶角、邻补角;平行四边形的性质;矩形的性质分析:根据对顶角的定义,正方形的判定,平行四边形的性质,矩形的性质对各选项分析判断利用排
10、除法求解解答:解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误故选:C点评:本题考查了正方形的判定,平行四边形的性质,矩形的性质,对顶角的定义,熟记各性质与判定方法是解题的关键3下列命题中是假命题的是()A一组对边平行且相等的四边形是平行四边形B一组对边相等且有一个角是直角的四边形是矩形C一组邻边相等的平行四边形是菱形D一组邻边相等的矩形是正方形考点:正方形的判定;平行四边形的判定;
11、菱形的判定;矩形的判定专题:证明题分析:做题时首先熟悉各种四边形的判定方法,然后作答解答:解:A、一组对边平行且相等的四边形是平行四边形,(平行四边形判定定理);正确B、一组对边相等且有一个角是直角的四边形是矩形,不一定是矩形,还可能是不规则四边形,错误C、一组邻边相等的平行四边形是菱形,正确;D、一组邻边相等的矩形是正方形,正确故选B点评:本题主要考查各种四边形的判定,基础题要细心4已知四边形ABCD是平行四边形,下列结论中不正确的有()当AB=BC时,它是菱形;当ACBD时,它是菱形;当ABC=90时,它是矩形;当AC=BD时,它是正方形A1组B2组C3组D4组考点:正方形的判定;平行四边
12、形的性质;菱形的判定;矩形的判定分析:根据邻边相等的平行四边形是菱形可判断正确;根据所给条件可以证出邻边相等,可判断正确;根据有一个角是直角的平行四边形是矩形可判断正确;根据对角线相等的平行四边形是矩形可以判断出错误解答:解:根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形正确;四边形ABCD是平行四边形,BO=OD,ACBD,AB2=BO2+AO2,AD2=DO2+AO2,AB=AD,四边形ABCD是菱形,故正确;根据有一个角是直角的平行四边形是矩形可知正确;根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故错误;故不正确的有
13、1个故选:A点评:此题主要考查了菱形的判定、矩形的判定、正方形的判定,关键是熟练掌握三种特殊平行四边形的判定定理5四边形ABCD的对角线AC=BD,ACBD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A正方形B菱形C矩形D任意四边形考点:正方形的判定分析:根据平行线的性质和判定得出NAO=AOD=N=90,EN=NM=FM=EF,进而判断即可解答:证明:如图所示:分别过A、B、C、D作对角线的平行线,ACMNEF,ENBDMF,对角线AC=BD,ACBD,NAO=AOD=N=90,EN=NM=FM=EF,四边形EFMN是正方形故选:A点评:此题主要考查了正方形的判定以及平
14、行线的性质和判定等知识,熟练掌握正方形的判定定理是解题关键6如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()AAB=AD且ACBDBAB=AD且AC=BD CA=B且AC=BDDAC和BD互相垂直平分考点:正方形的判定分析:根据正方形的判定对各个选项进行分析从而得到最后的答案解答:解:A、根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B、根据对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C、一组邻角相等的平行四边形是矩形
15、,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D、对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形故选B点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:先说明它是矩形,再说明有一组邻边相等;先说明它是菱形,再说明它有一个角为直角7下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线互相垂直平分的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与
16、定理分析:A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断解答:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C点评:本题综合考查了正方形、矩形、菱形及平行四边形的判定解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系8如图,在ABC中,ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,
17、仍不能证明四边形BECF为正方形的是()ABC=ACBCFBFCBD=DFDAC=BF考点:正方形的判定;线段垂直平分线的性质分析:根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可解答:解:EF垂直平分BC,BE=EC,BF=CF,BF=BE,BE=EC=CF=BF,四边形BECF是菱形;当BC=AC时,ACB=90,则A=45时,菱形BECF是正方形A=45,ACB=90,EBC=45EBF=2EBC=245=90菱形BECF是正方形故选项A正确,但不符合题意;当CFBF
18、时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意故选:D点评:本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键二填空题(共6小题)9能使平行四边形ABCD为正方形的条件是AC=BD且ACBD(填上一个符合题目要求的条件即可)考点:正方形的判定;平行四边形的性质专题:开放型分析:对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,矩形和
19、菱形的结合体是正方形解答:解:可添加对角线相等且对角线垂直或对角线相等,且一组邻边相等;或对角线垂直,有一个内角是90答案不唯一,此处填:AC=BD且ACBD点评:本题考查正方形的判定,需注意它是菱形和矩形的结合10如图,在RtABC中,C=90,DE垂直平分AC,DFBC,当ABC满足条件AC=BC时,四边形DECF是正方形 (要求:不再添加任何辅助线,只需填一个符合要求的条件)考点:正方形的判定专题:计算题;开放型分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件此题可从四边形DECF是正方形推出解答:解:设AC=BC,即ABC为等腰直角三角形,C=90,DE垂直平
20、分AC,DFBC,C=CED=EDF=DFC=90,DF=AC=CE,DE=BC=CF,DF=CE=DE=CF,四边形DECF是正方形,故答案为:AC=BC点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出ABC满足的条件11如图,菱形ABCD的对角线相交于点O,请你添加一个条件:AC=BD或ABBC,使得该菱形为正方形考点:正方形的判定;菱形的性质专题:压轴题分析:根据正方形判定定理进行分析解答:解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:ABBC;故添加的条件为:AC=BD或ABBC点评:本题答案不唯一,根
21、据菱形与正方形的关系求解12如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是AC=BD或ABBC考点:正方形的判定;菱形的判定专题:开放型分析:根据菱形的判定定理及正方形的判定定理即可解答解答:解:在四边形ABCD中,AB=BC=CD=DA四边形ABCD是菱形要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或ABBC点评:解答此题的关键是熟练掌握正方形的判定定理,即有一个角是直角的菱形是正方形13已知四边形ABCD中,A=B=C=90,若添加一个条件即可判定该四边形是正方形,那么
22、这个条件可以是AB=AD或ACBD等考点:正方形的判定;矩形的判定与性质专题:开放型分析:由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件解答:解:由A=B=C=90可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或ACBD等故答案为:AB=AD或ACBD等点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:先说明它是矩形,再说明有一组邻边相等;先说明它是菱形,再说明它有一个角为直角14要使一个菱形成为正方形,需添加一个条件为有一个角是直角或对角线相
23、等考点:正方形的判定;菱形的性质专题:开放型分析:根据菱形的性质及正方形的判定进行分析,从而得到最后答案解答:解:要使一个菱形成为正方形,需添加一个条件为:有一个角是直角或对角线相等点评:解答此题的关键是熟练掌握正方形的判定定理:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形三解答题(共8小题)15已知:如图,ABC中,ABC=90,BD是ABC的平分线,DEAB于点E,DFBC于点F求证:四边形DEBF是正方形考点:正方形的判定专题:证明题分析:由DEAB,DFBC,ABC=90,先证明四边形DEBF是矩形,再由BD是ABC的平分线,DEAB于点E,DFBC于点F得出DE
24、=DF判定四边形DEBF是正方形解答:解:DEAB,DFBC,DEB=DFB=90,又ABC=90,四边形BEDF为矩形,BD是ABC的平分线,且DEAB,DFBC,DE=DF,矩形BEDF为正方形点评:本题考查正方形的判定、角平分线的性质和矩形的判定要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形16如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PMAD,PNCD,垂足分别为M,N(1)求证:ADB=CDB;(2)若ADC=90,求证:四边形MPND是正方形考点:正方形的判定;全等三角形的判定与性质专题:证明题分析:(1)根据角平分线的性质
25、和全等三角形的判定方法证明ABDCBD,由全等三角形的性质即可得到:ADB=CDB;(2)若ADC=90,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形解答:证明:(1)对角线BD平分ABC,ABD=CBD,在ABD和CBD中,ABDCBD(SAS),ADB=CDB;(2)PMAD,PNCD,PMD=PND=90,ADC=90,四边形MPND是矩形,ADB=CDB,ADB=45PM=MD,四边形MPND是正方形点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定
26、17如图,在RtABC中,ACB=90,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由考点:正方形的判定;平行四边形的判定与性质;菱形的判定专题:几何综合题分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90,再根据正方形的判定推出即可解答:
27、(1)证明:DEBC,DFB=90,ACB=90,ACB=DFB,ACDE,MNAB,即CEAD,四边形ADEC是平行四边形,CE=AD;(2)解:四边形BECD是菱形,理由是:D为AB中点,AD=BD,CE=AD,BD=CE,BDCE,四边形BECD是平行四边形,ACB=90,D为AB中点,CD=BD,四边形BECD是菱形;(3)当A=45时,四边形BECD是正方形,理由是:解:ACB=90,A=45,ABC=A=45,AC=BC,D为BA中点,CDAB,CDB=90,四边形BECD是菱形,四边形BECD是正方形,即当A=45时,四边形BECD是正方形点评:本题考查了正方形的判定、平行四边形
28、的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力18如图,在ABC中,点D、E分别是边AB、AC的中点,将ADE绕点E旋转180得到CFE(1)求证:四边形ADCF是平行四边形(2)当ABC满足什么条件时,四边形ADCF是正方形?请说明理由考点:正方形的判定;平行四边形的判定分析:(1)利用旋转的性质得出点A、E、C三点共线,点D、E、F三点共线,且AE=CD,DE=FE,即可得出答案;(2)首先得出CDAB,即ADC=90,由(1)知,四边形ADCF是平行四边形,故四边形ADCF是矩形进而求出CD=AD即可得出答案解答:(1)证明:CFE是由ADE绕点E旋
29、转180得到,点A、E、C三点共线,点D、E、F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形(2)解:当ACB=90,AC=BC时,四边形ADCF是正方形理由如下:在ABC中,AC=BC,AD=BD,CDAB,即ADC=90而由(1)知,四边形ADCF是平行四边形,四边形ADCF是矩形又ACB=90,故四边形ADCF是正方形点评:此题主要考查了平行四边形的判定以及正方形的判定等知识,得出四边形ADCF是矩形是解题关键19如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作D
30、EAC于点E,DFBC于点F(1)求证:AEDBFD;(2)若AB=2,当CD的值为1时,四边形DECF是正方形考点:正方形的判定;全等三角形的判定分析:(1)先由作图知MN是线段AB的垂直平分线,根据垂直平分线的性质得出CA=CB,AD=BD,由等边对等角得到A=B,然后利用AAS即可证明AEDBFD;(2)若AB=2,当CD的值为1时,四边形DECF是正方形先由CD=AD=BD=1,MNAB,得出ACD与BCD都是等腰直角三角形,则ACD=BCD=45,ECF=90,根据有三个角是直角的四边形是矩形证明四边形DECF是矩形,再由等角对等边得出ED=CE,从而得出矩形DECF是正方形解答:(
31、1)证明:由作图知,MN是线段AB的垂直平分线,C是直线MN上任意一点,MN交AB于点D,CA=CB,AD=BD,A=B在AED与BFD中,AEDBFD(AAS);(2)解:若AB=2,当CD的值为1时,四边形DECF是正方形理由如下:AB=2,AD=BD=AB=1CD=AD=BD=1,MNAB,ACD与BCD都是等腰直角三角形,ACD=BCD=45,ECF=ACD+BCD=90,DEC=DFC=90,四边形DECF是矩形,CDE=9045=45,ECD=CDE=45,ED=CE,矩形DECF是正方形故答案为1点评:本题考查了线段垂直平分线的性质,全等三角形的判定,正方形的判定,等腰直角三角形
32、的判定与性质,难度适中20如图,AB是CD的垂直平分线,交CD于点M,过点M作MEA C,MFAD,垂足分别为E、F(1)求证:CAB=DAB;(2)若CAD=90,求证:四边形AEMF是正方形考点:正方形的判定;线段垂直平分线的性质;等腰三角形的判定与性质专题:证明题分析:(1)根据AB是CD的垂直平分线,得到AC=AD,然后利用三线合一的性质得到CAB=DAB即可;(2)首先判定四边形AEMF是矩形,然后证得ME=MF,利用邻边相等的矩形AEMF是正方形进行判定即可解答:(1)证明:AB是CD的垂直平分线,AC=AD,又ABCDCAB=DAB(等腰三角形的三线合一);(2)证明:MEA C
33、,MFAD,CAD=90,即CAD=AEM=AFM=90,四边形AEMF是矩形,又CAB=DAB,MEA C,MFAD,ME=MF,矩形AEMF是正方形点评:本题考查正方形的判定,线段的垂直平分线的性质及等腰三角形的判定与性质的知识,综合性较强,难度不大21如图,ABC中,点O是边AC上一个动点,过O作直线MNBC,设MN交ACB的平分线于点E,交ACB的外角平分线于点F(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处时,且ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE不可能是菱形吗?(填“可能”或“不可能”)考点:正方形的判定
34、;菱形的判定分析:(1)由直线MNBC,MN交BCA的平分线于点E,交BCA的外角平分线于点F,易证得OEC与OFC是等腰三角形,则可证得OE=OF=OC;(2)正方形的判定问题,AECF若是正方形,则必有对角线OA=OC,所以O为AC的中点,同样在ABC中,当ACB=90时,可满足其为正方形;(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直解答:解:(1)OE=OF理由如下:CE是ACB的角平分线,ACE=BCE,又MNBC,NEC=ECB,NEC=ACE,OE=OC,OF是BCA的外角平分线,OCF=FCD,又MNBC,OFC=ECD,OFC=COF,OF=OC,OE=OF
35、;(2)当点O运动到AC的中点,且ABC满足ACB为直角的直角三角形时,四边形AECF是正方形理由如下:当点O运动到AC的中点时,AO=CO,又EO=FO,四边形AECF是平行四边形,FO=CO,AO=CO=EO=FO,AO+CO=EO+FO,即AC=EF,四边形AECF是矩形已知MNBC,当ACB=90,则AOF=COE=COF=AOE=90,ACEF,四边形AECF是正方形;(3)不可能理由如下:如图,CE平分ACB,CF平分ACD,ECF=ACB+ACD=(ACB+ACD)=90,若四边形BCFE是菱形,则BFEC,但在GFC中,不可能存在两个角为90,所以不存在其为菱形故答案为不可能点
36、评:本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用22已知:如图,ABC中,点O是AC上的一动点,过点O作直线MNAC,设MN交BCA的平分线于点E,交BCA的外角ACG的平分线于点F,连接AE、AF(1)求证:ECF=90;(2)当点O运动到何处时,四边形AECF是矩形?请说明理由;(3)在(2)的条件下,ABC应该满足条件:ACB为直角的直角三角形,就能使矩形AECF变为正方形(直接添加条件,无需证明)考点:正方形的判定;等腰三角形的判定与性质;矩形的判定分析:(1)由已知MNBC,CE、CF分别平分BCO和GCO,可推出
37、OEC=OCE,OFC=OCF,所以得EO=CO=FO(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形(3)由已知和(2)得到的结论,点O运动到AC的中点时,且ABC满足ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形解答:(1)证明:CE平分BCO,CF平分DCO,OCE=BCE,OCF=DCF,ECF=180=90;(2)解:当点O运动到AC的中点时,四边形AECF是矩形理由如下:6、蚜虫是黄色的,在植物的嫩枝上吸食汁液,每个蚜虫只有针眼般大小,在10倍放大镜下我们可以看清它
38、们的肢体。MNBC,7、食盐、白糖、碱面、味精的颗粒都是有规则几何外形的固体,人们把这样的固体物质叫做晶体。自然界中的大部分固体物质都是晶体或由晶体组成。OEC=BCE,OFC=DCF,又CE平分BCO,CF平分DCO,OCE=BCE,OCF=DCF,5、减少垃圾的数量是从源头上解决问题的办法,我们每个人都可以想出许多减少垃圾数量的方法。OCE=OEC,OCF=OFC,1、说说你身边物质变化的例子。EO=CO,FO=CO,25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。OE=OF;5、减少垃圾的数量是从源头上解决问题的办法,我们每
39、个人都可以想出许多减少垃圾数量的方法。又当点O运动到AC的中点时,AO=CO,四边形AECF是平行四边形,ECF=90,14、在太阳周围的八颗大行星,它们是水星、金星、地球、火星、木星、土星、天王星、海王星。四边形AECF是矩形;答:当月球运行到地球和太阳的中间,如果月球挡住了太阳射向地球的光,便发生日食。(3)解:当点O运动到AC的中点时,且ABC满足ACB为直角的直角三角形时,四边形AECF是正方形由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MNBC,当ACB=90,则AOF=COE=COF=AOE=90,ACEF,答:燃烧的蜡烛变得越来越短,发光发热并伴有气体生成。四边形AECF是正方形故答案为:ACB为直角的直角三角形9、淡水是我们人类和其他生物生存的必需品,但是地球上的淡水资源十分有限,地球上的多数地区缺水。点评:此题考查的是正方形和矩形的判定,角平分线的定义,平行线的性质,等腰三角形的判定等知识解题的关键是由已知得出EO=FO,确定(2)(3)的条件
链接地址:https://www.31ppt.com/p-3879711.html