新人教版七年级数学下册全册导学案.doc
《新人教版七年级数学下册全册导学案.doc》由会员分享,可在线阅读,更多相关《新人教版七年级数学下册全册导学案.doc(30页珍藏版)》请在三一办公上搜索。
1、课题:5.1.1 相交线学习目标:1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。3.通过辨别对顶角与邻补角,培养识图的能力。学习重点及难点:重点:邻补角和对顶角的概念及对顶角相等的性质。难点:在较复杂的图形中准确辨认对顶角和邻补角。知识链接:同一平面内,两条直线的位置关系有几种?学法指导:自主学习、合作探究学习过程一、自主学习1.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大
2、,剪刀两刀刃之间的角又发生什么了变化? .2.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征? 二、合作探究 【探究一】1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?_O_D_C_B_A例如:(1)AOC和BOC有一条公共边OC,它们的另一边互为 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)AOC和BOD (有或没有)公共边,但AOC的两边分别是BOD两边的 ,称这两个角互为 。
3、用量角器量一量这两个角的度数,会发现它们的数量关系是 。2.根据观察和度量完成下表:两直线相交所形成的角分类位置关系数量关系3.用语言概括邻补角、对顶角概念. 的两个角叫邻补角。 的两个角叫对顶角。4.探究对顶角性质.在图1中,AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?三、达标检测1.如图所示,1和2是对顶角的图形有( )毛 A.1个
4、B.2个 C.3个 D.4个2.如图,直线AB,CD相交于O,OE平分AOC,若AOD-DOB=50,求EOB的度数.四、课堂小结及作业布置小结:作业:习题5.1 , 1、2五、教学反思课题:5.1.2 垂线(1)学习目标:1理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2掌握点到直线的距离的概念,并会度量点到直线的距离。3掌握垂线的性质,并会利用所学知识进行简单的推理。学习重点及难点:【学习重点】垂线的定义及性质。【学习难点】垂线的画法知识链接:相交和垂直有什么关系?学法指导:自主学习、合作探究学习过程一、自主学习阅读课本第3页完成下列问题1、当两条直线相交所成的四个角中
5、有一个角是90时,这两条直线互相,其中一条直线叫做另一条直线的,两条直线的交点叫,垂直用符号 来表示,读作,如直线AB垂直CD,就记作。2、举出日常生活中垂直的例子。二、合作探究 【探究一】1、用三角尺或量角器画出已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画出l的垂线,能画出几条?3、经过直线l外一点B画出l的垂线,能画出几条?lllBA图1图2图3由此我们得出如下结论:1、一条直线的垂线有条。2、过一点有且只有条直线与已知直线垂直(垂线性质1)。三、达标检测(一)判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两
6、条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).(二)填空题.1.如图1,OAOB,ODOC,O为垂足,若AOC=35,则BOD=_.2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.3.如图3,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_.(三)解答题.1.已知钝角AOB,点D在射线OB上. (1)画直线DEOB (2)画直线DFOA,垂足为F.四、课堂小结及作业布置小结:作业:五、教学反思课题:5.1.2 垂线(2)
7、学习目标:1、理解垂线段的概念2、掌握垂线段最短的性质3、学会用本节知识理解生活中的一些现象及解决生活中的一些实际问题学习重点及难点:重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用重点: 对点到直线的距离的概念的理解.知识链接:1.上学期我们学习过“什么什么最短”的几何知识,还记得吗?学法指导:自主学习、合作探究学习过程一、自主学习1、阅读课本第56页2、从直线外一点到已知直线的的垂线段的长度叫 如图,点A到直线l的距离就是垂线段的长度。lAADCB二、合作探究 【探究一】1、 如图,直线l外一点P与直线l上各点O,A1,A2,A3,其中POl(我们称PO为点P到直线l的垂线段)
8、。比较线段PO,P A1,P A2,P A3的长短,这些线段中哪一条最短?PlOA1 A2A3A42、如图,直线m表示公路,你在A处要尽快赶到公路,你会怎么走?为什么这么走? 通过以上问题你得到了什么启发?mA连接直线外一点与直线中各点的所有线段中最短(垂线性质2)。三、达标检测1、判断 (1)一条直线的垂线只有一条( ) (2)两直线相交所构成的四个角相等,则两条直线互相垂直( )。 (3)点到直线的垂线段就是点到直线的距离( )。 (4)过一点有且只有一条直线与已知直线垂直( )。2、下列图形中线段PQ的长度表示点P到直线a的距离的是( )。aaaaQCDPPQPPQQAB四、课堂小结及作
9、业布置小结:作业:五、教学反思课题:5.1.3同位角、内错角、同旁内角学习目标:1、明确构成同位角、内错角、同旁内角的条件,了解其命名的含义。2、经历在简单的图形中辨认同位角、内错角、同旁内角的过程会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。学习重点及难点:重点:同位角、内错角、同旁内角的概念。重点:各对关系角的辨认,复杂图形的辨认知识链接:画图:两条直线AB、CD都与第三条直线EF相交,构成几个角?在所画的图中标记出来。学法指导:自主学习、合作探究学习过程一、自主学习自学课本第6、7页,同位角、内错角、同旁内角如右图1 同位角:4和8与截线及两条被截直线在位置上有什么特点
10、?其它同位角( )2 内错角:3和5与截线及两条被截直线在位置上有什么特点?其它内错角( )3 同旁内角:4和5与截线及两条被截直线在位置上有什么特点?其它同旁内角( )同位角、内错角、同旁内角的特点:与被截直线的关系与截线的关系同位角内错角同旁内角二、合作探究 【探究一】如图:请指出图中的同位角、内错角、同旁内角(提示:请仔细读题、认真看图。)同位角: 内错角: 同旁内角: 三、达标检测1.如图1,直线AD与BC被直线AB所截,1和2是 ,2和DAB是 ,5和6是直线 和直线 被直线 所截而形成的内错角;2.如图2,1和2是 角,它们是由直线 和直线 被直线 所截而成的,EDC和DAB是 角
11、,它们是由直线 和直线 被直线 所截而成的;3、如图,直线DE、BC被直线AB所截。(1)1与2、1与3、1与4各是什么角?(2)如果1=4,那么1和2相等吗?1和3互补吗?为什么?4指出图239(1)中,2和5的关系是_;3和5的关系是_;2和_是直线_、_被_所截,形成的同位角;1和4呢?3和4呢?6和7是对顶角吗?5指出图中239(2)中,C和D的关系:B和GEF的关系;A和D的关系;AGE和BGE的关系;CFD和AFB的关系如图239(3),用数学标出的八个角中同位角有_;内错角有_;同旁内角有_;四、课堂小结及作业布置小结:作业:五、教学反思课题:5.1相交线复习学习目标:1. 通过
12、动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题学习重点及难点:邻补角与对顶角的概念.对顶角性质与应用学法指导:自主学习、教师点拨学习过程一、自主学习选择题:1下列说法正确的是 ( )(A)点到直线的距离就是这点到直线所作的垂直线段;(B)相等的角必是对顶角;(C)一个角的平分线是这个角的对顶角的平分线的反向延长线;(D)互补且有公共点的两个角是邻补角.3如图,已知:,于点,那么的度数是( )(A); (B) ; (C); (D).4与互
13、为邻补角(),则的余角等于下列各式中的( )(A); (B); (C); (D).5三条直线相交于一点,总共有对顶角 ( )(A)3对; (B)4对; (C)5对; (D)6对.二、合作探究 【探究一】11.如图所示,直线AB与CD相交于点O ,EOB=90,EOD:DOB=3:1 求COE的度数。12.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后去河边钓鱼,怎样走路最短?请画出行走路径,并说明理由。13.过点P画出射线OA与OB的垂线三、达标检测13已知:与是邻补角,且比大,求的度数.14已知:如图,、相交于点,求四、课堂小结及作业布置小结:作业:五、教学反思课题:
14、5.2.1平行线学习目标:1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛 2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论. 3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.学习重点及难点:重点:探索和掌握平行公理及其推论重点: :对平行线本质属性的理解,用几何语言描述图形的性质知识链接:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学法指导:自主学习、合作探究学习过程一、自主学习1.结合演示的结论,用自己的语言描述平行线的认识:平行线是同一 的两条直线平行
15、线是 交点的两条直线2尝试用数学语言描述平行定义 特别注意:直线a与b是平行线,记作“ ”,这里“ ”是平行符号.思考: 如何确定两条直线的位置关系?.二、合作探究 【探究一】1.在转动教具木条b的过程中,有几个位置能使b与a平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?3.观察画图、归纳平行公理及推论. (1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质. 共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的. 不同点:平行公理
16、中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,也可在直线 .4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相 .(2)从直线b、c产生的过程说明直线b直线c.(3)用三角尺与直尺用平推方法验证bc.(4)用数学语言表达这个结论 用符号语言表达为:如果 那么 (5)简单应用. 将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。三、达标检测一、填空1 在同一平面内,两条直线有 种位置关系,它们是 ;2.直线m与n在同一平面内不相交,则它们的位置关系是 ;3.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 七年 级数 下册 全册导学案
链接地址:https://www.31ppt.com/p-3877598.html