极值点偏移问题两种常见解法之比较.docx
《极值点偏移问题两种常见解法之比较.docx》由会员分享,可在线阅读,更多相关《极值点偏移问题两种常见解法之比较.docx(9页珍藏版)》请在三一办公上搜索。
1、极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法 在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数是连续函数,在区间内有且只有一个极值点,且,若极值点左右的“增减速度”相同,常常有极值点,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数在区间内单调递增,则对区间内的任意两个变量,;若函数在区间内单调递减,则对区间内的任意两个变量,. 二是利用“
2、对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数和的对数平均数定义:对数平均数与算术平均数、几何平均数的大小关系是:,(此式记为对数平均不等式)下面给出对数平均不等式的证明:i)当时,显然等号成立 ii)当时,不妨设, 先证,要证,只须证:, 令,只须证: 设,则,所以在内单调递减,所以,即,故再证: 要证:,只须证: 令,则只须证:,只须证 设,则 所以在区间内单调递减,所以,即, 故综上述,当时, 例1 (2016年高考数学全国理科第21题)已知函数有两个零点 ()求的取值范围; ()设是的两个零点,证明:解:()函数的定义域为,当时,得,只有一个零点,不合题
3、意;当时, 当时,由得,由得,由得, 故,是的极小值点,也是的最小值点,所以 又,故在区间内存在一个零点,即 由又,所以,在区间 存在唯一零点,即, 故时,存在两个零点;当时,由得, 若,即时,故在上单调递增,与题意不符 若,即时,易证故在上只有一 个零点,若,即时,易证 ,故在上只有一个零点综上述,()解法一、根据函数的单调性证明由()知,且令,则因为,所以,所以,所以在内单调递增所以,即,所以,所以,因为,在区间内单调递减,所以,即解法二、利用对数平均不等式证明由()知,又 所以,当时,且,故当时,又因为 即 所以 所以 所以 所以 下面用反证法证明不等式成立 因为,所以,所以 假设,当,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极值 偏移 问题 常见 解法 比较
链接地址:https://www.31ppt.com/p-3872256.html