数形结合思想在解题中的应用.doc
《数形结合思想在解题中的应用.doc》由会员分享,可在线阅读,更多相关《数形结合思想在解题中的应用.doc(11页珍藏版)》请在三一办公上搜索。
1、数形结合思想在解题中的应用 数形结合思想在解题中的应用 摘 要 数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。 数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。数量关系如果能有效地结合图形,往往会使抽象问题
2、直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。关键词:数形结合 思想方法 应用解题 第一章 绪 论 数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系1。在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中
3、的应用范围和数形结合思想在解题中的实际应用做了浅显成述。第二章 数形结合思想的概述和历史演进2.1数形结合思想的概述 数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面1。以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。 2.2数形结合思想的历史演进 随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的几何原本,再到从笛卡尔创立平面直角坐标
4、系到近、现代数学研究,数形结合一直伴随其行。在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。1637年,笛卡尔在其几何学中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线2。笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对与平面上的点一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。于是就可以用代数方法来研究几何图形的性质,把几
5、何研究转换成对应的代数的研究。 第三章 浅谈数形结合思想解题能力的培养 “数”和“形”两者是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,而在探讨形”的性质时,又离不开“数”的支撑。现阶段使用的教材,“代数”与“几何”融和为一门数学学科,更体现了“数”与“形”的结合,因此教师在教学中要做好“数”与“形”关系的揭示与转化,运用数形结合的方法,帮助学生类比、发掘,剖析其所具有的几何模型,这对于帮助学生深化思维,扩展知识,提高能力都有很大的帮助。在教学过程中教师应有目的、有计划地进行数形结合思想的教学,使学生逐步有数形结合思想这一思想理念,并使之成为解决数学问题的工具。3.1在教学过程中适
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结合 思想 解题 中的 应用

链接地址:https://www.31ppt.com/p-3870691.html