放缩法在不等式的应用.doc
《放缩法在不等式的应用.doc》由会员分享,可在线阅读,更多相关《放缩法在不等式的应用.doc(9页珍藏版)》请在三一办公上搜索。
1、放缩法在不等式的应用所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一. “添舍”放缩通过对不等式的一边进行添项或减项以达到解题目
2、的,这是常规思路。例1. 设a,b为不相等的两正数,且a3b3a2b2,求证。证明:由题设得a2abb2ab,于是(ab)2a2abb2ab,又ab0,得ab1,又ab(ab)2,而(ab)2ababab(ab)2,即(ab)2ab,所以ab,故有1ab。例2. 已知a、b、c不全为零,求证:证明:因为,同理,。所以二. 分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3. 已知a、b、c为三角形的三边,求证:。证明:由于a、b、c为正数,所以,所以,又a,b,c为三角形的边,故b+ca,则为
3、真分数,则,同理,故.综合得。三. 裂项放缩若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4. 已知nN*,求。证明:因为,则,证毕。例5. 已知且,求证:对所有正整数n都成立。证明:因为,所以,又,所以,综合知结论成立。例6 设数列满足 ()证明对一切正整数成立;()令,判定与的大小,并说明理由(04年重庆卷理科第(22)题)简析 本题有多种放缩证明方法,这里我们对()进行减项放缩,有法1 用数学归纳法(只考虑第二步);法2 则.四. 利用重要不等式放缩1.均值不等式利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。例7 设求证解析 此数列的通项为,
4、即 注:应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放过“度”了! 根据所证不等式的结构特征来选取所需要的重要不等式,这里 其中,等的各式及其变式公式均可供选用。例8已知为正数,且,试证:对每一个,.(88年全国联赛题)简析 由得,又,故,而,令,则=,因为,倒序相加得=,而,则=,所以,即对每一个,.2利用有用结论例9 求证简析 本题可以利用的有用结论主要有: 法1 利用假分数的一个性质可得 即 法2 利用贝努利不等式的一个特例(此处)得 注:例9是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 放缩法 不等式 应用
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3870069.html