《O型圈密封结构设计参考ppt课件.ppt》由会员分享,可在线阅读,更多相关《O型圈密封结构设计参考ppt课件.ppt(47页珍藏版)》请在三一办公上搜索。
1、O,型圈密封结构设计,1,Li Qiang,2011-01-07,Johnson Controls|January 2009,2,O,型圈密封结构设计,1,、,O,型圈概述,2,、,O,型圈密封原理和要求,3,、,O,型圈材料特性及选择,4,、,O,型圈密封的设计原则,5,、,O,型圈密封沟槽设计,6,、,O,型圈的性能,7,、,O,型圈失效,8,、,O,型圈的变形发展,9,、,O,型圈生产制造,10,、问题,Johnson Controls|January 2009,3,1.0 O,型圈概述,O,型圈是一种界面形状为圆形的,橡胶,圈,是液压气动中应用最广泛的密封件,Johnson Contr
2、ols|January 2009,4,1.1 O,型圈特点,特点:,1,尺寸小装拆方便,2,动静密封均可用,3,静密封几乎没有泄漏,4,单件使用双向密封,5,动摩擦力小,6,价格低,Johnson Controls|January 2009,5,2.1 O,型圈密封原理,O,型圈密封是一种挤压型密封。当密封件产生初始形变和应力,P,seal,,,P,w,P,seal,时,将不会泄漏。,P,m,=P,0,+P,p,,,P,p,=K,P,。,P,m,=P,0,+K,P,K,为介质压力传递给,O,型圈压力的系数(对橡胶,,K=1,;对无缝钢管?复合密封圈?),因此,只要,O,型圈存在初始压力,就可实
3、现无泄漏的绝对密封。,O,型圈密封是一种自密封结构。,Johnson Controls|January 2009,6,2.2,O,型圈密封压缩变形率选择,理论上,0,压缩也可实现密封,实际是不可能的。,偏心,工作载荷下,,O,型圈拉伸,变细,就可能泄漏,低温,橡胶收缩,变细,可能泄漏(低温会造成橡胶加速老化,失去补偿能力),一般断面有,7%-30%,的压缩变形率,静密封取大的压缩率(,15%-30%,),动密封取小的压缩率(,9-25%,),偏心,Johnson Controls|January 2009,7,2.3,O,型圈受内压、外压选择,受内压,O,型圈外径与沟槽外径相同,受外压,O,型
4、圈内径与沟槽内径相同,防止出现在工作压力下出现,O,型圈直径变小。,将,O,形圈安装在沟槽内时,要受到拉伸或压缩。若拉伸和压缩的数值过大,将导致,O,形圈截面过度增大或,减小,因为拉伸,1%,相应地使截面直径,W,减小约,0.5%,。对于孔用(内压)密封,,O,形圈最好处于拉伸状态,最,大允许拉伸量为,6%,;对于轴用(内压)密封,,O,形圈最好延其周长方向受压缩,最大允许周长压缩量为,3%,。,受内压,受外压,Johnson Controls|January 2009,8,2.4,O,型圈挤出原理,Johnson Controls|January 2009,9,2.4 O,型圈允许挤出间隙,
5、最大允许挤出间隙,gmax,和系统,压力,,O,形圈截面直径以及材料硬,度有关。通常,工作压力越高,最,大允许挤出间隙,gmax,取值越小。如,果间隙,g,超过允许范围,就会导致,O,形圈挤出甚至损坏,当压力超过,5MPa,时,建议使用挡圈,材料硬度,压力,MPa,O,形圈截面直径,W,1.78,2.62,3.53,5.33,7.00,邵氏硬度,A70,3.50,0.08,0.09,0.10,0.13,0.15,7.00,0.05,0.07,0.08,0.09,0.10,10.50,0.03,0.04,0.05,0.07,0.08,邵氏硬度,A80,3.50,0.10,0.13,0.15,0.
6、18,0.20,7.00,0.08,0.09,0.10,0.13,0.15,10.50,0.05,0.07,0.08,0.09,0.10,14.00,0.03,0.04,0.05,0.07,0.08,17.50,0.02,0.02,0.03,0.03,0.04,邵氏硬度,A90,3.50,0.13,0.15,0.20,0.23,0.25,7.00,0.10,0.13,0.15,0.18,0.20,10.50,0.07,0.09,0.10,0.13,0.15,14.00,0.05,0.07,0.08,0.09,0.10,17.50,0.04,0.05,0.07,0.08,0.09,21.00,0
7、.03,0.04,0.05,0.07,0.08,35.00,0.02,0.03,0.03,0.04,0.04,Johnson Controls|January 2009,10,2.4,O,型圈允许挤出间隙,Johnson Controls|January 2009,11,2.5,O,型圈压缩量选择,液压,-,气动,-,静密封,液压,-,动密封,气动,-,动密封,和材料有关的,O,形圈圆周方向的压缩力,Johnson Controls|January 2009,12,3.0,O,型圈材料特性,Johnson Controls|January 2009,13,3.1,O,型圈材料特性比较图,Joh
8、nson Controls|January 2009,14,3.2,O,型圈材料特性排序,Johnson Controls|January 2009,15,3.3,O,型圈材料硬度,Johnson Controls|January 2009,16,3.4,O,型圈材料特性,Johnson Controls|January 2009,17,3.5,O,型圈材料耐化学性,Johnson Controls|January 2009,18,3.6,O,型圈材料耐温性,Johnson Controls|January 2009,19,3.7,O,型圈材料选择原则,外界因素:,1,,工作状态:动密封,静密
9、封;连续工作,间断工作等,2,,工作介质:液体、气体还是两相流,及介质的物理化学性能,与介质相容性,3,,工作压力:介质工作压力高低,压力波幅,瞬时最大压力,4,,工作温度:瞬时温度和冷热交变温度,5,,成本来源:成本低,来源广,O,型圈的硬度硬度:,一般为,70-90,邵氏硬度,静密封选低值,70,,旋转密封取高值,80,,极少采用,90,。,Johnson Controls|January 2009,20,4.0,O,型圈设计原则,通则:,O,型圈密封是挤压式密封,设计主要内容为,O,型圈的压缩和拉伸。,O,型圈直径,压缩,和,拉伸,。,a,,压缩量过小:泄漏,b,,压缩量过大:应力松弛引
10、起泄漏,c,,拉伸量过大:界面直径减少太大而引起泄漏,4.0,压缩率设计:,W%=(d,0,-h)/d,0,。,a,,有足够的密封接触面积,b,,避免永久变形,c,,摩擦力尽量小,圆柱静密封:,10%-15%,,平面静密封:,15%-30%,。,往复运动密封:,10%-15%,。,旋转动密封:内径比轴大,3%-5%,,外径压缩率为,3%-8%,。,低摩擦用密封:一般为,5%-8%,,考虑介质和温度引起的膨胀,,如超过,15%,,重新选材。,Johnson Controls|January 2009,21,4.1,O,型圈设计原则,4.1,拉伸率设计:,W%=(d,0,+d)/(d,0,+d,1
11、,),。,O,型圈装入轴中后,一般会有拉伸,如果无拉伸,,装配时容易脱出,如拉伸过大,会导致,O,型圈截面,积减少太多,出现泄漏。,一般其拉伸量为,1%-5%,。,Johnson Controls|January 2009,22,4.2,O,型圈设计原则,4.2,接触宽度设计:,O,形圈装入密封沟槽后,其横截面产生压缩变形。变形后的宽度及,其与密封面的接触宽度都和,O,形圈的密封性能,其值过小会使密封性受,到影响。,O,形圈变形后的宽度,Bo,(,mm,)与,O,形圈的压缩率,W,和截面直径,d,o,有关,,可用下式计算,B,o,=,(,1/(1-W)-0.6W,),d,o,(,W,取,10%
12、40%,),O,形圈与密封面的接触面宽度,b,(,mm,)也取决于,W,和,d,o,:,b=(4W2+0.34W+0.31)d,o,(W,取,10%40%),一般情况,考虑到压力脉动和抽真空的需求,,Bo,应接近于槽宽,,对于气体介质的密封,,Bo,应比槽宽小,0.1-0.2mm,;对于液体介质的密封,,Bo,应比槽宽小,0.2-0.5mm,。,同时,Bo,不应大于槽宽,否则承压后可能会减小密封接触宽度,同,时减小密封接触应力而导致泄漏。,有压力脉动时,槽宽过大会导致,O,型圈来回偏移,出现磨损;槽宽,过小会导致,O,型圈填满沟槽,导致阻力过大。,b,Bo,Johnson Controls|J
13、anuary 2009,23,5.0,O,型圈沟槽设计,5.0 O,型圈沟槽设计:,槽体积比,O,型圈体积大,15%,左右。,设计参数:形状,尺寸,精度,粗糙度,对于动密封,需要计算相对运动间隙。,原则:容易加工,尺寸合理,精度容易保证,拆装方便。,a,,有压缩,3%-30%,的压缩。,b,,在介质中膨胀,温升膨胀。,c,,太窄磨损,太宽滚动磨损。,Johnson Controls|January 2009,24,5.1,O,型圈沟槽设计,5.2 O,型圈沟槽深度设计:,槽深的设计决定,O,型圈的设计压缩量,沟槽深度加上间隙小于,O,型圈自由状态下,O,型圈的线径。,O,型圈的压缩量由内径压缩
14、量,和外径压缩量,”,构成。,”,O,型圈安装时受压缩;拆卸时,O,型圈有弹跳;常用于旋转密封。,=,”,O,型圈安装时未受压缩;最为常用。,”,O,型圈安装时受拉伸;用于滑动密封,如活塞密封。,5.3 O,型圈沟槽槽口和槽底圆角设计:,槽口圆角:防止,O,型圈装配时出现割伤和刮伤。,R=0.1,0.2 mm,过大,过小会出现什么情况?(挤出和割伤),槽底圆角:防止出现应力集中,,动:,R=0.1,1.0 mm,,静,:R=d,0,/2 mm,,,Johnson Controls|January 2009,25,5.3,O,型圈沟槽设计,5.4 O,型圈沟槽槽口和槽底圆角设计:,槽口圆角:防止
15、,O,型圈装配时出现割伤和刮伤。,R=0.1,0.2 mm,过大,过小会出现什么情况?(挤出和割伤),槽底圆角:防止出现应力集中,,动:,R=0.1,1.0 mm,,静,:R=d,0,/2 mm,,,5.5 O,型圈沟槽表面粗糙度设计:,静密封:,Ra=6.3,3.2,,,动密封:,Ra=1.6,,,旋转密封:轴凹槽:,Ra=0.4,或更小。,A,,采用什么样的工艺来加工沟槽比较好。,B,,沟槽的粗糙度过大或过小会出现什么问题,。,Johnson Controls|January 2009,26,5.4,O,型圈沟槽设计,5.6 O,型圈挡圈设计:,目的:防止,O,型圈在工作时出现间隙咬伤和挤
16、出实效。,使用:单向受压,一个挡圈;双向受压,两个挡圈。,Johnson Controls|January 2009,27,5.5,O,型圈沟槽设计,5.7 O,型圈沟槽型式和公差:详见,GB/T 34523,Johnson Controls|January 2009,28,5.6,O,型圈沟槽设计,5.8 O,型圈密封常见型式:,轴向密封,径向密封,接头密封,闷塞密封,Johnson Controls|January 2009,29,6.0,O,型圈性能,抗磨损,Johnson Controls|January 2009,30,6.1,O,型圈性能,密封性能,Johnson Controls
17、|January 2009,31,6.2,O,型圈密封要求,稳定性,Johnson Controls|January 2009,32,6.3,O,型圈性能,抗挤出性,Johnson Controls|January 2009,33,6.4,O,型圈性能,贴合性,Johnson Controls|January 2009,34,7.0,O,型圈失效,7.0 O,型圈失效:,O,型圈常见的失效原因有材,料问题、压缩变形、间隙咬伤,、扭曲现象、磨料磨损、表面,粗糙度不当和焦耳效应等。,压缩变形,如右图所示:,Johnson Controls|January 2009,35,7.1,O,型圈失效,7.
18、1 O,型圈失效:,O,型圈磨损,如右图所示:,Johnson Controls|January 2009,36,7.2,O,型圈失效,7.2 O,型圈失效:,O,型圈安装损坏,如右图所示:,Johnson Controls|January 2009,37,7.3,O,型圈失效,7.3 O,型圈失效:,O,型圈爆破失效,如右图所示:,Johnson Controls|January 2009,38,7.4,O,型圈失效,7.4 O,型圈失效:,O,型圈热损伤和氧化,如右图,所示:,Johnson Controls|January 2009,39,7.5,O,型圈失效,7.5 O,型圈失效:,O
19、,型圈扭曲滚转损坏,如右图,所示:,Johnson Controls|January 2009,40,7.6,O,型圈失效,7.6 O,型圈失效:,O,型圈挤出失效,如右图所示:,Johnson Controls|January 2009,41,7.7,O,型圈失效,7.7 O,型圈失效:,O,型圈膨胀失效,如右图所示:,Johnson Controls|January 2009,42,7.8,O,型圈失效,7.8 O,型圈失效:,O,型圈老化,/,氧化失效,如右图所示:,Johnson Controls|January 2009,43,7.9,O,型圈失效,7.9 O,型圈失效:,O,型圈非典型失效,如右图所示:,Johnson Controls|January 2009,44,8.0,其他型式的密封圈,O,型圈的常见的变形型式,Johnson Controls|January 2009,45,9.0,非标,O,型圈制造,1,,非标,O,型圈计算和制造,2,,标准大批量,O,型圈如何,生产?飞边如何去除?,Johnson Controls|January 2009,46,10,Question,?,Johnson Controls|January 2009,
链接地址:https://www.31ppt.com/p-3866025.html