滨海某核电站设备腐蚀问题的研究.doc
《滨海某核电站设备腐蚀问题的研究.doc》由会员分享,可在线阅读,更多相关《滨海某核电站设备腐蚀问题的研究.doc(13页珍藏版)》请在三一办公上搜索。
1、滨海某核电站设备腐蚀问题的研究 摘要:分析了滨海核电站的腐蚀原理及分类,并以滨海某核电站典型的设备腐蚀问题为例,概括了滨海核电站设备腐蚀特点及成因,提出了解决腐蚀问题的策略。 关键词:滨海核电站;设备腐蚀;策略 中图分类号: U665 文献标识码: A 1 引言 核电站由于其环境条件、运行工况的特殊性,对设备和结构的安全性、可靠性提出了更高的要求。然而,对滨海核电站,受亚热带海洋性气候的影响,金属设备必须承受高温、高湿、高盐环境的煎熬,而对于工程建设阶段的核电站来说,除上述腐蚀环境外,还要受到如设备保养环境恶劣,交叉施工,人力投入不足等因素的影响,设备腐蚀问题也愈来愈突出。 2 滨海核电站腐蚀
2、原理及分类 2.1 腐蚀原理 2.1.1化学腐蚀 在湿度较大、有侵蚀性介质的环境中,金属材料与空气接触时铁分子与空气中的氧及水分子起化学反应而生成氧化铁(锈)。铁锈的成份非常复杂,其中的水化氧化亚铁因含有大量的水份,可以对钢材造成再腐蚀作用。致使已氧化生锈的钢材不论是否再与空气接触氧化锈层均会继续发展。因此对钢结构的保护,不仅要使其与水分和氧隔绝还要彻底清除其表面的锈蚀。 2.1.2 电化学腐蚀 滨海核电站设备的腐蚀速度与环境、温度和湿度以及有害介质的存在有关,其中湿度是一个决定性因素。金属设备在干燥、洁净的空气中遭受腐蚀的速度是十分缓慢的,只有处于潮湿的、含有导电性粒子的空气中,金属才会腐蚀
3、,特别是在海洋性气候环境中,海水和海洋大气对金属设备的侵蚀破坏更为严重,其腐蚀的速度比内陆大气中的高出许多倍。相对湿度达到某临界点时,水分在钢结构表面形成水膜,促进电化学过程,表现腐蚀速度增加。 2.2 腐蚀状况及分类 按腐蚀介质划分,核电站腐蚀环境主要有:海洋大气腐蚀、水环境腐蚀和极端环境腐蚀3种1。 2.2.1 海洋大气腐蚀 该核电站地处亚热带季风性气候区,腐蚀主要发生在与海洋大气直接接触的结构材料和设备上。海洋大气腐蚀的对象涉及施工期间半封闭状态的核岛厂房、常规岛厂房以及三回路相关系统和厂房等;该核电厂核岛厂房发生的腐蚀问题如压力容器上下法兰面及螺栓锈蚀,一回路PTR/RIS/EAS系统
4、不锈钢管道及焊缝,一回路设备地脚螺栓普遍腐蚀问题,三回路相关系统和设备的腐蚀问题等,均与施工阶段半封闭状态下,高湿度环境下海洋大气腐蚀有关。 2.2.2水环境腐蚀 水环境腐蚀既包括普遍存在的海水环境,海水腐蚀,也包括除氧除盐水腐蚀。海水腐蚀包括材料和设备在海水介质中的均匀腐蚀、缝隙腐蚀、电偶腐蚀、点蚀、应力腐蚀开裂、腐蚀疲劳和海生物腐蚀;淡水腐蚀为经除盐除氧处理后的淡水对输送管道的腐蚀。该核电站二回路设备在停用后,内部普遍发生的腐蚀问题均属于水环境腐蚀。如凝汽器、除氧器、高低加、GGR主油室、汽水分离再热器、GSS疏水箱等设备内部发生的腐蚀问题等。 2.2.3极端环境腐蚀问题 极端腐蚀环境既包
5、括一回路高温高压硼酸水对碳钢和低合金钢的腐蚀,也包括二回路高温蒸汽水对设备和管道内部的冲刷腐蚀和FAC,还包括三回路酸碱盐介质对设备的内外部腐蚀,海水穿墙体管道的腐蚀以及PX泵站内海水飞溅腐蚀等。该核电站三回路发生的CFI鼓形滤网不锈钢网片及碳钢骨架腐蚀、泵坑设备腐蚀问题、YA/YB酸碱区域设备腐蚀等均属于极端环境腐蚀问题。 上述3种腐蚀类型几乎涵盖了该核电站包括一回路、二回路、BOP设备在内的绝大多数腐蚀问题。 3典型腐蚀问题简析 3.1 一回路主设备腐蚀问题 压水堆核电站(PWR) 回路包含了核电站最重要的设备,有反应堆压力容器、蒸汽发生器、稳压器、堆内构件、一回路管道、主泵等。这些设备的
6、可靠性关系到整个核电站的安全和运行。 国内某核电站工程建设期间(含设备到场、安装、调试阶段),一回路主设备出现了不同程度的腐蚀问题,例如反应堆压力容器、蒸汽发生器、主泵、RIS泵、EAS安全喷淋泵等;主要的腐蚀问题如下: 3.1.1蒸汽发生器螺杆腐蚀 蒸汽发生器、虽然能够更换,但更换所需的时间长、维修费用大。该核电站蒸汽发生器到场后,在海洋露天环境下放置了较长时间,且吊装进入反应堆厂房后,在交叉施工且保护措施不健全的前提下,蒸汽发生器焊缝部位临时涂层大面积脱落,焊缝部位锈蚀;并且,1号蒸汽发生器螺杆产生锈蚀。如图1示。 3.1.2压力容器主螺栓锈蚀 压力容器是不能更换的,如果它损坏就意味着核电
7、站的关闭。该核电站压力容器筒体采用16MnR,并在内壁堆焊2层308、309系列不锈钢。本身具有较强的防腐蚀性能。该核电站压力容器安装后,压力容器上下法兰面及螺栓发生了锈蚀,且锈蚀面积较大。腐蚀状况见图1。主螺栓在出厂前,均进行了磷化处理,理论上是能达到防腐要求的。由于装运、安装过程中缺乏周全的防护措施,致使磷化层受损,螺栓腐蚀。如图2示。 图1蒸汽发生器螺杆锈蚀图2 压力容器及主螺栓腐蚀 3.1.3一回路PTR/RIS/EAS系统不锈钢设备腐蚀 一回路PTR/RIS/EAS系统不锈钢管道及焊缝部位在安装后,出现了锈蚀,特别是焊缝部位,锈蚀情况较为严重。施工方采取了现场打磨并实施酸洗钝化的处理
8、方式,该方案清除了表面大部分腐蚀产物,但导致焊缝部位腐蚀的根本原因如焊缝缺陷、铁素体及卤族元素污染未得到解决,所以该方案的效果有限,处理后的不锈钢管道再次发生腐蚀,便是佐证。 不锈钢表面污染物(可溶性盐与可溶性铁等)可成为不锈钢锈蚀的诱因,为了将不锈钢外表面污染物可能引起的危害降至最低,需要对机组不同区域的不锈钢表面污染物含量进行检测,确定不锈钢表面受污染部位以及污染程度。该核电站对一号机组R厂房、K厂房一回路不锈钢设备外表面Cl-进行了检测,发现RX/KX厂房一回路不锈钢外表面Cl-几乎全部都超标;部分设备表面有明显的锈迹和异物,对机组一回路不锈钢设备及管道上面的灰尘进行彻底清理,对设备及管
9、道上的锈迹进行清理并进行有效的钝化处理,保持室内通风,使相对湿度60%,很有必要。 3.2常规岛厂房内的设备腐蚀问题 常规岛厂房有汽轮机及其附属设备,二回路大量设备与管道如凝汽器、除氧器、高低加、GGR主油室、汽水分离再热器、GSS疏水箱等设备。特别是二回路设备,在安装期间,散装容器的施工、调试及试运行,这两个环节稍微控制不当,便会出现比较严重的腐蚀问题。该核电站在安装调试期间,二回路设备发生的腐蚀问题主要有: 3.2.1 凝汽器腐蚀 作为常规岛厂房内极为重要的设备,凝汽器承担着为汽轮机建立和维持真空,汽机特殊工况(启动、降负荷等)时接收来自旁路排放系统(GCT)的蒸汽,将蒸汽凝结成水,回收和
10、储存纯净的凝结水,为动力循环提供给水等多项重要功能。直接关系到汽轮机组运行功率和安全性。 然而,在安装调试期间,发生了多项较严重的腐蚀类问题。部分区域清洁度较差,工作残留物(管件、边角料、焊渣、铁丝、木屑等)较多;CEX两侧疏水箱内部有明显锈迹;CEX底部热阱局部有残留积水,湿度增大,易诱发腐蚀。CEX过滤器防异物措施不到位,进水管口有焊渣和打磨灰尘,滤网表面有锈斑。更为严重的问题是,CEX凝汽器在第一次冲转后,凝汽器进、出口八个水室管板封口焊处有锈点或有黄色锈水渗出,颜色及形貌看,该腐蚀产物不属于钛腐蚀后产物(呈黑色或深灰色);而是来自汽侧的碳钢或其它合金钢,如支撑板等其它结构。该腐蚀问题的
11、发生是钛管管板密封不严,渗入管板内的海水与碳钢层发生腐蚀所致。腐蚀形貌如下图3示。 图3 B2、B4入口水室若干处管口密封焊部位腐蚀 3.2.2 除氧器内部腐蚀 作为集除氧、加热、蓄水三功能为一体的压力容器,除氧器是汽轮机组又一重要的设备,在建设期间,特别是在除氧器水压试验后,由于缺乏有效的保养措施,该核电站除氧器内部发生了大面积腐蚀,内部鼓泡管和防浪挡板等构件有大量红褐色锈斑,其筒体、顶部喷淋管也发生了大面积锈蚀。对防锈剂取样分析,呈浅黄色透明液体,其水溶性良好,主要成分为亚硝酸钠和乙醇胺,实测pH值为9.2左右,未检测到氯离子和硫酸根离子。 鉴于上述较为严重的腐蚀问题,施工方采取了内部人工
12、除锈,并涂刷水基防锈剂,以期达到保护、缓解内部构件腐蚀的目的,从后期除氧器的情况看,该方法起到了一定的作用。 3.2.3高低压缸及汽轮机大轴锈蚀 常规岛厂房在安装施工期间,长期处于半封闭状态,加上沿海潮湿海洋大气的影响,使得厂房内部的设备表面极易凝结水,并进一步发生腐蚀。如图4示。高低压缸、汽轮机大轴吊运到常规岛厂房20m汽机平台后,表面有大量汽水凝结,顶部有大面积停用腐蚀锈斑。 图4 机大轴表面有水汽凝结、局部停用腐蚀锈斑 BOP厂房内的设备腐蚀问题 3.3.1鼓形滤网不锈钢网片及碳钢骨架腐蚀 CFI鼓形滤网是核电站关键敏感设备,鼓形滤网不可用或失效将直接导致机组降低功率甚至停机。 该核电站
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滨海 核电站 设备 腐蚀 问题 研究
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3864925.html