水吸收二氧化硫过程填料吸收塔的设计化工原理课程设计.doc
《水吸收二氧化硫过程填料吸收塔的设计化工原理课程设计.doc》由会员分享,可在线阅读,更多相关《水吸收二氧化硫过程填料吸收塔的设计化工原理课程设计.doc(39页珍藏版)》请在三一办公上搜索。
1、吉林化工学院化 工 原 理 课 程 设 计题目 水吸收二氧化硫过程填料吸收塔的设计 教 学 院 化工与材料工程学院 专业班级 轻化0802 学生姓名 学生学号 指导教师 2010年11月 18 日 课程设计任务书1、设计题目:水吸收二氧化硫过程填料吸收塔的设计;矿石焙烧炉送出的气体冷却到25后送入填料塔中,用20清水洗涤洗涤除去其中的SO2。入塔的炉气流量为6000m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小用量的1.5倍。2、工艺操作条件:(1)操作平均压力 常压(2)
2、操作温度 t=20 (3)每年生产时间:7200h。(4)选用填料类型及规格自选。3、设计任务:完成干燥器的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。目 录摘 要5第1章 绪论61.1吸收技术概况61.2吸收设备的发展71.3吸收在工业生产中的应用91.3.1 塔设备在化工生产中的作用和地位101.3.2 化工生产对塔设备的要求10第2章 设计方案112.1吸收剂的选择112.2吸收流程的选择122.2.1吸收工艺流程的确定122.2.2吸收工艺流程图及工艺过程说明132.3吸收塔设备及填料的选择132.3.1吸收塔的设备选择132
3、.3.2填料的选择142.4吸收剂再生方法的选择162.5操作参数的选择172.5.1操作温度的选择172.5.2操作压力的选择172.5.3液气比的选择17第3章 吸收塔的工艺计算193.1基础物性数据193.1.1液相物性数据193.1.2气相物性数据193.1.3气液平衡数据193.2物料衡算203.3填料塔的工艺尺寸的计算213.3.1塔径的计算213.3.2泛点率校核213.3.3填料规格校核:223.3.4液体喷淋密度校核223.4填料塔填料高度计算223.4.1传质单元数的计算223.4.1传质单元高度计算223.4.3填料层高度计算243.5填料塔附属高度计算243.6液体分布
4、器计算253.6.1液体分布器253.6.2 布液孔数263.6.3塔底液体保持管高度273.7其他附属塔内件的选择273.7.1 除沫器及筛网装置273.7.2填料支承板283.7.3填料压板与床层限制板283.7.4气体进出口装置与排液装置293.7.5 塔的辅助装置293.7.5.1 裙座293.7.5.2 人孔和手孔293.8吸收塔的流体力学参数计算303.8.1吸收塔的压力降303.8.2吸收塔的泛点率313.8.3气体动能因子313.9附属设备的计算与选择323.9.1接管尺寸的计算举例323.9.2离心泵的选择与计算33工艺设计计算结果汇总与主要符号说明35主要符号说明36参考文
5、献39结束语40摘 要 在化工工业中,经常需要将气体混合物的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。二氧化硫是化工生产中的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业生产的大量的含有二氧化硫的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的二氧化硫进行吸收,本次化工原理课程设计的目的是根据设计
6、要求采用填料吸收塔吸收的方法来净化含有二氧化硫的工业尾气,使其达到排放标准。设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用乃腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。设计中选择合适的液体分布器及再分布器,除沫装置以及填料支承装置,并对泛点率和液体喷淋密度进行了校核。关键词: 水 填料塔 吸收 二氧化硫 低浓度第1章 绪论1.1吸收技术概况 在化工生产中,经常要处理各种原料、中间产物、粗产品。,大部分都是均相物系,但往往不能满足生产要求,需要把他们分离成为较纯净
7、的物质,为了实现这种分离,常利用均相物系中不同组分的某种性质差异,使其中的一种组分(或几种组分),在分离设备所提供的两相物系界面上,通过充分的接触,从一相转移到另一相,其它组分仍保留在原物系中,从而实现了分离。这种分离是物质在相际间的转移过程,即物质传递过程,也是化工生产中的单元操作。吸收就是这种以物质分离为目的的单元操作。吸收是用来分离气体混合物的,是利用混合气体中各组分在吸收剂中的溶解度的差异而实现分离的操作。在吸收过程中,混合气体与合适的液体吸收剂在吸收设备中充分接触,气体中易溶解的组分被溶解,不能溶解的组分仍保留在气相中,这样混合气体就实现了分离。吸收操作所用的液体称为吸收剂或溶剂;混
8、合气中,被溶解的组分称为溶质或吸收质;不被溶解的组分称为惰性气体或载体;所得到的溶液称为吸收液。其成分是溶剂与溶质;排除的气体称为吸收尾气,如果吸收剂的挥发度很小,则其中主要成分为惰性气体以及残留的溶质。还可以通过吸收除去混合气体中的有害组分使其净化,例如用水或碱液除去合成氨原料气中的二氧化碳,用丙酮除去石油裂解气中的乙炔,以及除去工业废气中的二氧化硫、硫化氢等有害物质。实际生产中,吸收过程所用的吸收剂常需回收利用,故一般来说,完整的吸收过程应包括吸收和解吸两部分,因而在设计上应将两部分综合考虑,才能得到较为理想的设计结果。作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组
9、成、温度、压力以及分离要求的条件下,根据给定的分离任务,确定吸收方案;构成一个完整的流程结构。1.2吸收设备的发展吸收塔是实现吸收操作的设备。按气液相接触形态分为三类。第一类是气体以气泡形态分散在液相中的板式塔、鼓泡吸收塔、搅拌鼓泡吸收塔;第二类是液体以液滴状分散在气相中的喷射器、文氏管、喷雾塔;第三类为液体以膜状运动与气相进行接触的填料吸收塔和降膜吸收塔。塔内气液两相的流动方式可以逆流也可并流。通常采用逆流操作,吸收剂以塔顶加入自上而下流动,与从下向上流动的气体接触,吸收了吸收质的液体从塔底排出,净化后的气体从塔顶排出。工业吸收塔应具备以下基本要求:1塔内气体与液体应有足够的接触面积和接触时
10、间。2气液两相应具有强烈扰动,减少传质阻力,提高吸收效率。3操作范围宽,运行稳定。4设备阻力小,能耗低。5具有足够的机械强度和耐腐蚀能力。6结构简单、便于制造和检修。几种常用的吸收塔1填料塔它由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成,塔外壳多采用金属材料,也可用塑料制造。填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH1型扁环填料、八
11、四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300700Pa,与板式塔相比处理风量小,空塔气速通常为0512m/s,气速过大会形成液泛,喷淋密度68m3(m2,h)以保证填料润湿,液气比控制在210Lm3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。2湍球塔它是填料塔的一种特殊形式,运行时塔内填料处于运动状态,以强化吸收过程。在塔内栅板间放置一定数量的轻质小球
12、填料(直径2938mm),吸收剂自塔顶喷下,湿润小球表面,气体从塔底进入,小球被吹起湍动旋转,由于气、液、固三相充分接触,小球表面液膜不断更新,增加了吸收推动力。提高了吸收效率。该塔制造、安装、维修较方便,可以用大小、质量不同的小球改变操作范围。该塔处理风量较大,空塔气速1560ms,喷淋密度20110m3(m2h),压力损失1 5003 800Pa,而且还可处理含尘气体。其缺点是塑料小球不能承受高温,小球易裂(一般051年),需经常更换,成本高。3板式塔板式塔是在塔内装有一层层的塔板,液体从塔顶进入。气体从塔底进入,气液的传质、传热过程是在各个塔板上进行。板式塔种类很多。大致可分为二类:一类
13、是降液管式,如泡罩塔、筛孔板塔、浮阀塔、S形单向流板塔、舌形板塔、浮动喷射塔等;另一类是穿流式板塔,如穿流栅孔板塔(淋降板塔)、波纹穿流板塔、菱形斜孔板塔、短管穿流板塔等。(1)筛孔板塔筛孔直径一般取510mm,筛孔总面积占筛板面积的1018。为使筛板上液层厚度保持均匀,筛板上设有溢流堰,液层厚度一般为40mn左右,筛板空塔风速约为1035ms,筛板小孔气速613ms,每层筛板阻力300600Pa。筛孔板塔主要优点是构造简单,处理风量大,并能处理含尘气体。不足之处是筛孔堵塞清理较麻烦,塔的安装要求严格,塔板应保持水平;操作弹性较小。(2)斜孔板塔斜孔板塔是筛孔板塔的另一形式。斜孔宽1020m,
14、长1015mm,高6mm。空塔气流速度一般取135ms,筛孔气流速度取1015m/s。气体从斜孔水平喷出,相邻两孔的孔口方向相反,交错排列,液体经溢流堰供至塔板(堰高30mm),与气流方向垂直流动,造成气液的高度湍流,使气液表面不断更新,气液充分接触,传质效果较好,净化效率高,同时可以处理含尘气体,不易堵塞,每层筛板阻力约为400600Pa。该塔结构比筛孔板塔复杂,制造较困难,安装要求严格,容易发生偏流。(3)文氏管吸收器文氏管吸收器通常由文氏管、喷雾器和旋风分离器组成,操作时将液体雾化喷射到文氏喉管的气流中,气流速度为60100ms,处理100m3min的废气需液体雾化喷人量为40Lmin。
15、文氏管吸收器结构简单、设备小、占空间少、气速高、处理量大、气液接触好、传质较容易,特别适用于捕集气流中的微小颗粒物。但因气液并流,气液接触时间短,不适合难溶或反应速度慢的气液吸收,而且压力损失大(8009000h),能耗高 4. 液膜吸收器:在液膜吸收器中,气液两相在流动的液膜表面上接触。液膜是沿着圆管或平板的纵向表面流动的。已知有三种类型的液膜吸收器:列管式吸收器:液膜沿垂直圆管的内壁流动;板状填料吸收器:填料是一些平行的薄板,液膜沿垂直薄板的两测流动; 升膜式吸收器:液膜向上(反向)流动。目前,液膜吸收器应用比较少,其中最常见的是列管式吸收器,常用于从高浓度气体混合物同时取出热量的易溶气体
16、(氯化氢,二氧化硫)的吸收。填料吸收器 填料吸收器是装有各种不同形状填料的塔。喷淋液体沿填料表面流下,气液两相主要在填料的润湿表面上接触。设备单位体积内的填料表面积可以相当大,因此,能在较小的体积内得到很大的传质表面。但在很多情况下,填料的活性接触表面小于其几何表面。 5. 填料吸收器:填料吸收器一般作成塔状,塔内装有支撑板,板上堆放填料层。喷淋的液体通过分布器洒向填料。在吸收器内,填料在整个塔内堆成一个整体。有时也将填料装成几层,每层的下边都设有单独的支撑板。当填料分层堆放时,层与层之间常装有液体再分布装置。在填料吸收器中,气体和液体的运动经常是逆流的。而很少采用并流操作。但近年来对在高气速
17、条件下操作的并流填料吸收器给予另外很大的关注。在这样高的气速下,不但可以强化过程和缩小设备尺寸,而且并流的阻力降也要比逆流时显著降低。这样高的气速在逆流时因为会造成液泛,是不可能达到的。如果两相的运动方向对推动力没有明显的影响,就可以采用这种并流吸收器。近年来,开发使用了斜孔塔盘、导向筛板、网孔塔盘、大孔筛板、浮阀-筛板复合塔盘以及浮动喷射塔板、旋流塔板等。填料塔所用填料,对于乱堆填料除拉西环、鲍尔环外,阶梯环、金属矩鞍环已大量采用;由于金属丝网及金属板波纹填料规整填料的使用,并配合新型塔内件结构使填料塔的效率大为提高,因此应用范围日益扩大。更多的新型材料将有助于开发各种塔的进一步发展。1.3
18、吸收在工业生产中的应用在化工生产中所处理的原料中间产物粗产品等几乎都是混合物,而且大部分是均相混合物,为进一步加工和使用,常需将这些混合物分离为较纯净或几乎纯态的物质。对于均相物系,要想进行组分间的分离,必须要造成一两个物系,利用原物系中各组分间某种物性的差异,而使其中某个组分(或某些组分)从一相转移到另一相,以达到分离的目的。物质在相间的转移过程称为物质传递过程。吸收单元操作是化学工业中常见的传质过程。气体的吸收在化工生产中主要用来达到以下几种目的 (1)分离混合气体以获得一定的组分。例如用硫酸处理焦炉气以回收其中的二氧化硫,用气油处理焦炉气以回收其中的芳烃,用液态烃处理裂解气以回收其中的乙
19、烯、丙烯等。(2)除去有害组分以净化气体。例如用水和碱液脱除合成二氧化硫原料气中的二氧化碳,用丙酮脱除裂解气中的乙炔等。(3)制备某种气体的溶液。例如用水吸收二氧化氮以制造硝酸,用水吸收氯化氢以制备盐酸,用水吸收甲醛以制备福尔马林溶液等。(4)保护环境。例如:电厂的锅炉尾气含二氧化硫。硝酸生产尾气含一氧化氮等有害气体,均须用吸收方法除去。(5)用液体吸收气体获得半成品或成品。例如:用水吸收氯化氢制取盐酸;在硫酸生产中SO3吸收;用水或碱溶液吸收氮氧化物生产硝酸或硝酸盐。这类吸收,吸收后就不再进行解吸了。(6)从气体混合物中回收有价值的组分。为了防止有价值组分的损失并污染环境,例如:易挥发性溶剂
20、如醇、酮、醚等的回收。1.3.1 塔设备在化工生产中的作用和地位塔设备是化学工业、石油工业、石油化工等生产中最重要的设备之一。在塔设备中能进行的单元操作有:精馏、吸收、解吸、气体的增浓及冷却等。在化工、石油化工及炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大影响。在化工和石油化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.39%,炼油和煤化工生产装置占34.85%。它所耗用的钢材重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压及减压炼油蒸馏装置中耗用的钢材重量占62.4%,年产60及120万吨的催化裂化
21、装置占48.9%。因此,塔设备的设计和研究,对化工、炼油等工业的发展起着重大作用。1.3.2 化工生产对塔设备的要求塔设备除了应满足特定的化工工艺条件(如温度、压力及耐腐蚀)外,为了满足工业生产的需要还应达到下列要求:(1) 生产能力大,即气液处理量大;(2) 高的传质和传热效率,即气液有充分的接触空间、接触时间和接触面积;(3) 操作稳定,操作弹性大,即气液负荷有较大波动时仍能在较高的传质效率下进行稳定的操作,且塔设备应能长期连续运转;(4) 流体流动的阻力小,即流体通过听设备的压力降小,以达到节能降低操作费用的要求;(5) 结构简单可靠,材料耗用量小,制造安装容易,以达到降低设备投资的要求
22、。在实际上,任何一个塔设备能同时达到上述的诸项要求是很困难的,因此只能从生产需要及经济合理的要求出发,抓住主要矛盾进行设计。随着人们对于增大生产能力、提高效率、稳定操作和降低压力降的追求,推动着各种新型塔结构的出现和发展。第2章 设计方案吸收过程的设计方案主要包括吸收剂的选择、吸收流程的选择、解吸方法选择、设备类型选择、操作参数的选择等内容.2.1吸收剂的选择对于吸收操作,选择适宜的吸收剂,具有十分重要的意义.其对吸收操作过程的经济性有着十分重要的影响.一般情况下,选择吸收剂,要着重考虑如下问题.(一)对溶质的溶解度大所选的吸收剂多溶质的溶解度大,则单位量的吸收剂能够溶解较多的溶质,在一定的处
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吸收 二氧化硫 过程 填料 吸收塔 设计 化工 原理 课程设计
链接地址:https://www.31ppt.com/p-3864195.html