宝钢碱性氧气转炉炼钢生产及洁净钢控制外文翻译、中英对照、英汉互译.doc
《宝钢碱性氧气转炉炼钢生产及洁净钢控制外文翻译、中英对照、英汉互译.doc》由会员分享,可在线阅读,更多相关《宝钢碱性氧气转炉炼钢生产及洁净钢控制外文翻译、中英对照、英汉互译.doc(19页珍藏版)》请在三一办公上搜索。
1、毕 业 设 计 外 文 翻 译 专 业: 冶金工程 班 级: 冶金一班 Basic oxygen furnace based steel-making processes and cleanliness control at BaosteelL. Zhang*1, J. Zhi2, F. Mei2, L. Zhu2, X. Jiang2, J. Shen2, J. Cui2, K. Cai3 and B. G. Thomas4Optical microscopy, total oxygen measurements and slime tests have been conducted to
2、quantify the size distribution and amount of inclusions at various processing steps during basic oxygen furnace (BOF) based steel production at Baosteel. The effects on steel cleanliness of specific operational improvements during steel refining and continuous casting have been investigated. Such im
3、provements to these processes and the resulting level of steel cleanliness at Baosteel are summarised in the present paper. Ladle slag reduction lowers FeO + MnO in the slag to below 5%, decreasing steel reoxidation by the slag. Calcium treatment by CaSi wire injection during ladle furnace (LF) refi
4、ning is used to modify inclusions . Slag detection is employed at the ladle bottom during continuous casting. Flow control devices, CaO containing filters and high CaO based basic powder with CaO/Si024 are used in the tundish to remove more inclusions. With this BOF based steelmaking process, impuri
5、ty levels can be controlled to achieve-total oxygen (TO)16 ppm, S5 ppm, P35 ppm, N29 ppm, H1 ppm in line pipe steels, and C16 ppm, TO19 ppm, N15 ppm in interstitial free (IF) steels.Keywords: Clean steel, Inclusions, Impurity elements, Interstitial free steel, Line pipe steelIntroductionThe importan
6、ce of clean steel in terras of product quality is increasingly being recognised. Clean steel requires control of the size distribution, morphology and composition of non-metallic oxide inclusions in addition to the amount. Furthermore, sulphur, phosphorus, hydrogen, nitrogen and even carbon1,2 shoul
7、d also be controlled to improve the steel properties. For example, ,formability, ductility and fatigue strength worsen with increasing sulphide and oxide inclusion contents. Lowering the carbon and nitrogen enhances strain aging and increases ductility and toughness. Hardenability and resistance to
8、temper embrittlement can be enhanced by reducing phosphorus. The definition of clean steel varies with the steel grade and its end use. For example, interstitial free (IF) steel requires both carbon and nitrogen to be 30 ppm; line pipe steel requires sulphur, phosphorus and total oxygen (TO) all to
9、be 30 ppm,low hydrogen, low nitrogen and suitable Ca/S and bearing steel requires the total oxygen to be less than 10 ppm.3 In addition, many applications restrict the maximum size of inclusions 3,4 , so the size distribution of inclusions is also important. Baoshan Iron & Steel Co., Ltd (Baosteel)
10、is currently the largest steel company in China. Its annual steel production was 115 million tonnes in 2003, 119 million tonnes in 2004 and 14.0 million tonnes in 2005. With regard to the basic oxygen furnace (BOF) based steelmaking route, there are three 300 t and two 250 t BOFs; several steel refi
11、ning units, including one CAS-OB unit (controlled argon stirring-oxygen blow), two RH (Ruhrstahl-Heraeus) degassers and one ladle furnace (LF). Since 1990, efforts to improve steel cleanliness have focused on developing steelmaking practices to lower TO, N, S, P, H and C levels to achieve low carbon
12、 aluminium killed (LCAK) steel. For LCAK steel and IF steel, the production process is BOFRHcontinuous casting (CC), and for line pipe steel, the process is BOFRHLFCC.Experimental method and examination of inclusions in steelExperimental methodsLadle steel samples were taken 500-600 mm below the top
13、 slag in the ladle, tundish steel samples from 300 mm above its outlet and mould steel samples from 150 mm below the meniscus and 300 mm away from the submerged entry nozzle (SEN) outports. The sampler was a cylindrical steel cup with a cone shaped copper cover to protect it from slag entrainment du
14、ring immersion. Attached to a long bar, the sampler was immersed deep into the molten steel, where the copper melted and the cup was filled. Small steel samples , 80mm in length and 30mm in diameter, were machined into 5 (dia.) x 5 mm cylinders for TO and nitrogen analysis, and 20 (dia.) 15 mm cylin
15、ders for microscope examination. The steel powders resulting from machining were used for analysis of the carbon, phosphorus and sulphur contents. Large Steel samples from the ladle and tundish, 200 mm in length and 80 mm in diameter, were machined into 60 (dia.) 150 mm cylinders; as shown in Fig. 1
16、. TO and nitrogen measurement. Analysis included the chemical composition of slag and steel samples, microscope examination of microinclusions, slime extraction of macroinclusions and SEM analysis of the morphology and composition of inclusions. Fig.1 Sampling locations for continuously cast slab: T
17、O total oxygenIn the present work, macroinclusions were those greater than 50 um in diameter. Most of these were detected in the residues extracted by electrolytic isolation (slime test) from the larger steel samples. The microinclusions data derive from microscopic assessments carried out on planar
18、 sections, most of which were smaller than 50 mMorphology and composition of typical inclusions The morphology ,composition and likely sources of typical inclusions found in LCAK steel samples form the ladle ,tundish and mound are shown in Figs.2 and 3 respectively.The morphologies included: (a) ang
19、ular aluminate(Fig.2 d and f and Fig.3b);(b)alumina cluster (Fig.2b and c);and (c) spherical silicate (Fig. 2a and c and Fig. 3a). a. ladle; b. tundish; c,d. mound; e,f. slab Fig.2 Typical inclusions from given samples examined by microscope (a) tundish (b) slabFig. 3 Typical inclusions from given s
20、amples extracted using slime method The possible sources were deoxidation products, reoxidation products or broken refractory lining bricks. In line pipe steel, besides these common inclusions, many nanoscale TiN inclusions were found along grain boundaries. These nano TiN changed from square to ell
21、ipsoid if combined with Ti2O3 , as shown in Fig. 4 5 a . compound inclusions with composition Ti2O3+MnS ; b. TiN inclusion Fig.4 Nanoprecipitates in line pipe steelTotal oxygen measurement is an indirect method of evaluating oxide inclusions in a steel.3 The total oxygen (TO) in the steel is the sum
22、 of the free oxygen (dissolved oxygen) and the oxygen combined as non-metallic inclusions. Free oxygen, or active oxygen, can be measured relatively readily using oxygen sensors. It is controlled mainly by equilibrium thermodynamics with deoxidation elements, such as aluminium. If %A1 =0.03-0-06, th
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 宝钢 碱性 氧气 转炉 炼钢 生产 洁净 控制 外文 翻译 中英对照 英汉

链接地址:https://www.31ppt.com/p-3862304.html