圆锥曲线与方程教材分析.doc
《圆锥曲线与方程教材分析.doc》由会员分享,可在线阅读,更多相关《圆锥曲线与方程教材分析.doc(47页珍藏版)》请在三一办公上搜索。
1、第二章 圆锥曲线与方程教材分析为了更好的把握圆锥曲线与方程这部分内容的要求,首先需要明确整体定位。标准对圆锥曲线与方程这部分内容的整体定位如下:“在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。”一、内容与课程学习目标(1)圆锥曲线 : 了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标
2、准方程、几何图形及简单性质。 了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 通过圆锥曲线的学习,进一步体会数形结合的思想。(2)曲线与方程:结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想。二、内容安排本章包括4节,约需13课时,具体分配如下(仅供参考):2 1曲线与方程 约2课时2 2 椭圆 约4课时2 3 双曲线 约3课时2 4 抛物线 约2课时小 结 约2课时三、教学要求在引入圆锥曲线时,应通过丰富的实例(如行星运行轨道、抛物运动轨迹、探照灯的镜面
3、),使学生了解圆锥曲线的背景与应用。教师应向学生展示平面截圆锥得到椭圆的过程,使学生加深对圆锥曲线的理解。有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。教师可以向学生展现圆锥曲线在实际中的应用,例如,投掷铅球的运行轨迹、卫星的运行轨迹。曲线与方程的教学应以学习过的曲线为主,注重使学生体会曲线与方程的对应关系,感受数形结合的基本思想。对于感兴趣的学生,教师也可以引导学生了解圆锥曲线的离心率与统一方程。有条件的学校应充分发挥现代教育技术的作用,通过一些软件向学生演示方程中参数的变化对方程所表示的曲线的影响,使学生进一步理解曲线与方程的关系。椭圆及其标准方程教学首
4、先从探究活动开始:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,看看这时笔尖(动点)画出的轨迹是什么?(圆),如果把两端拉开一段距离,分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹又是什么?讨论:这个环节,是为了更好的体现探究性,在传统教材的基础上,先设置了细绳的两端都固定在图板的同一点处的情况,实际的教学应怎样操作?有这么几种:教师自己演示(用自作的教具或几何画板),学生观察教师课前要求所有的学生都自带学具到课堂上进行操作,教师带教具,让学生到台前进行操作,其他同学观察。 椭圆与抛物线的简单几何性质是指:椭圆:范围、对称性、顶点和刻画椭圆
5、的扁平程度的概念-离心率(定义性概念)抛物线:范围、对称性、顶点和离心率(定义性概念)例如:判断方程 6x2+10y2=60所描述的曲线是什么曲线? 如果是椭圆请写出其标准方程并写出焦点、顶点坐标和离心率.在这样的题目中我们不能再增加“并写出准线方程”一问.双曲线的的有关性质是指:范围、对称性、顶点、渐近线和离心率(定义性概念)圆锥曲线的参数方程在这里不作要求,不必引入教学,对它们的学习将在选修系列4坐标系与参数方程中学习.用坐标法解决一些与圆锥曲线有关的简单几何问题仅限于直线与圆锥曲线的位置关系.解决实际问题也是初步利用圆锥曲线模型.曲线与方程例如:如果命题“坐标满足方程F(x,y)=0的点
6、都在曲线C上”不正确,那么,以下正确的命题是( ) A、坐标满足方程F(x,y)=0的点都不在曲线C上B、曲线C上点坐的标都满足方程F(x,y)=0 C、一定有不在曲线C上的点,并且其坐标满足方程F(x,y)=0D、坐标满足方程F(x,y)=0的点有些在曲线C上,有些不在曲线C上虽然这是一个很好的既复习逻辑内容又欲帮助学生理解曲线与方程关系的题目.我们认为在这里提出不太适宜,虽然学生在必修部分的 数学2 的直线和方程、圆与方程,也学习了圆锥曲线方程,有了一定的感性认识, 因为本题给出的是抽象的曲线和方程,太抽象,不利于实现课程标准提出的:“结合已学过的曲线及其方程的实例,了解曲线与方程的对应关
7、系,进一步感受数形结合的基本思想.”的要求.使学生经过内化,对曲线和方程的关系从具体到一般,形成一个更加系统、完整的认识。四、重、难点的分析教学重点是:经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义、标准方程、几何图形及简单性质.理解坐标法的基本思想.了解双曲线的定义、标准方程、几何图形及有关性质经历从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义、标准方程、几何图形及简单性质.掌握圆锥曲线标准方程中a,b,c,p的几何意义;初步了解圆锥曲线的离心率e 能用坐标法判断直线和圆锥曲线的位置关系.了解曲线的方程与方程的曲线的概念,使学生体会曲线与方程的对应关系,通过解决简单的几何问题和实
8、际问题,进一步感受数形结合的基本思想.教学难点是:椭圆的标准方程的推导与化简;坐标法的应用双曲线的标准方程推导与化简理解曲线的方程与方程的曲线的概念;曲线与方程的对应关系;求曲线方程第1课时 2.1.1曲线与方程(一)教学目标 1了解平面直角坐标中“曲线的方程”和“方程的曲线”的含义. 2会判定一个点是否在已知曲线上.(二)教学重点与难点重点:曲线和方程的概念;难点:曲线和方程概念的理解(三)教学过程.复习回顾师:在本章开始时,我们研究过直线的各种方程,讨论了直线和二元一次方程的关系.下面我们进一步研究一般曲线和方程的关系.讲授新课1曲线与方程关系举例:师:我们知道,两坐标轴所成的角位于第一、
9、三象限的平分线的方程是xy=0.这就是说,如果点M(x0,y0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即x0=y0,那么它的坐标(x0,y0)是方程xy=0的解;反过来,如果(x0,y0)是方程xy=0的解,即x0=y0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上.(如图)又如,以为圆心、为半径的圆的方程是。这就是说,如果是圆上的点,那么它到圆心的距离一定等于半径,即,也就是,这说明它的坐标是方程的解;反过来,如果是方程的解,即,也就是,即以这个解为坐标的点到点的距离为,它一定在以为圆心、为半径的圆上的点。(如右图).2曲线与方程概念一般地,在直角坐标系中,如果
10、其曲线c上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线3点在曲线上的充要条件:如果曲线C的方程是f(x,y)=0,那么点P0=(x0,y0).在曲线C上的充要条件是f(x0,y0)=0.4例题讲解: 例1 证明与两条坐标轴的距离之积是常数的点的轨迹方程是。证明:(1)设M(x0,y0)是轨迹上的任意一点,因为点M与轴的距离为,与轴的距离为,所以 即是方程的解.(2)设的坐标是方程的解,那么
11、即而正是点到轴,轴的距离,因此点到两条直线的距离的积是常数,点是曲线上的点。由可知,是与两条坐标轴的距离之积是常数的点的轨迹方程。.课堂练习:课本P37练习1.课堂小结师:通过本节学习,要求大家能够理解“曲线的方程”与“方程的曲线”的概念,并掌握判断一点是否在某曲线上的方法,为进一步学习解析几何打下基础.课后作业P37习题 A组 1,2 B组 1第2课时 2.1.2求曲线的方程(一)教学目标1了解解析几何的基本思想;2了解用坐标法研究几何问题的初步知识和观点;3初步掌握求曲线的方程的方法.(二)教学重点与难点求曲线的方程,求曲线方程一般步骤的掌握.(三)教学过程.复习回顾:师:上一节,我们已经
12、建立了曲线的方程.方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)所满足的方程f(x,y)=0表示曲线,通过研究方程的性质间接地来研究曲线的性质.这一节,我们就来学习这一方法.讲授新课1解析几何与坐标法:我们把借助于坐标系研究几何图形的方法叫做坐标法. 在数学中,用坐标法研究几何图形的知识形成了一门叫解析几何的学科.因此,解析几何是用代数方法研究几何问题的一门数学学科.2平面解析几何研究的主要问题:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.说明:本节主要讨论求解曲线方
13、程的一般步骤. 例2 设A、B两点的坐标是(1,1),(3,7),求线段AB的垂直平分线的方程.解:设M(x,y)是线段AB的垂直平分线上任意一点(如图),也就是点M属于集合.由两点间的距离公式,点M所适合条件可表示为:将上式两边平方,整理得: x+2y7=0 我们证明方程是线段AB的垂直平分线的方程.(1)由求方程的过程可知,垂直平分线上每一点的坐标都是方程解;(2)设点M1的坐标(x1,y1)是方程的解,即 x+2y17=0 x1=72y1点M1到A、B的距离分别是即点M1在线段AB的垂直平分线上.由(1)、(2)可知方程是线段AB的垂直平分线的方程.师:由上面的例子可以看出,求曲线(图形
14、)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件P的点M的集合P=M|P(M);(3)用坐标表示条件P(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明.另外,根据情况,也可以省略步骤(2),直接列出曲线方程.师:下面我们通过例子来进一步熟悉求曲线轨迹的一般步骤.例3 已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离
15、的差都是2,求这条曲线的方程.解:如图所示,设点M(x,y)是曲线上任意一点,MBx轴,垂足是B,那么点M属于集合由距离公式,点M适合的条件可表示为: 将式移项后再两边平方,得x2+(y2)2=(y+2)2,化简得:因为曲线在x轴的上方,所以y0,虽然原点O的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程是 (x0)。师:上述两个例题让学生了解坐标法的解题方法,明确建立适当的坐标系是求解曲线方程的基础;同时,根据曲线上的点所要适合的条件列出等式,是求曲线方程的重要环节,在这里常用到一些基本公式,如两点间距离公式,点到直线的距离公式,直线的斜率公式等,因此先要了解上述知识,必要时
16、作适当复习.课堂练习 课本P37练习3.课堂小结师:通过本节学习,要求大家初步认识坐标法研究几何问题的知识与观点,进而逐步掌握求曲线的方程的一般步骤.课后作业P37习题A组 3,4 B组 2第3课时 2.2.1椭圆及其标准方程(一)教学目标1.理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;2.理解椭圆标准方程的推导过程及化简无理方程的常用的方法;3.了解求椭圆的动点的伴随点的轨迹方程的一般方法(二)教学重点与难点 椭圆的标准方程(三)教学过程(1)预习与引入过程:当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特
17、别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个)当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?板书211椭圆及其标准方程(2)新课讲授过程(i)由上述探究过程容易
18、得到椭圆的定义把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse)其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距即当动点设为时,椭圆即为点集(ii)椭圆标准方程的推导过程已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理 设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义 类比:写出焦点在轴上,中心在原点的椭圆的标准方程(iii)例题讲解与引申例1 已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程分析:由
19、椭圆的标准方程的定义及给出的条件,容易求出引导学生用其他方法来解解:设椭圆的标准方程为,因点在椭圆上,则例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程引申:设定点,是椭圆上动点,求线段中点的轨迹方程解法剖析:(代入法求伴随轨迹)设,;(点与伴随点的关系)为线段的中点,;(代入已知轨迹求出伴随轨迹),点的轨迹方程为;伴随轨迹表示的范围例3如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程分析:若设点,则
20、直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程解法剖析:设点,则,;代入点的集合有,化简即可得点的轨迹方程引申:如图,设的两个顶点,顶点在移动,且,且,试求动点的轨迹方程引申目的有两点:让学生明白题目涉及问题的一般情形;当值在变化时,线段的角色也是从椭圆的长轴圆的直径椭圆的短轴 练习:第42页1、2、3、4、作业:第49页1、2第4课时 2.2.2椭圆的简单几何性质(一)教学目标1.了解用方程的方法研究图形的对称性;2.理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;3.通过
21、例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义(二)教学重点与难点椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念.(三)教学过程(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养由椭圆的标准方程和非负实数的概念能得到椭圆的范围;由方程的性质得到椭圆的对称性;先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率板书212椭圆的简单几何性质(2)新课讲授
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 方程 教材 分析

链接地址:https://www.31ppt.com/p-3843402.html