平面向量知识点与考点精(经典).doc
《平面向量知识点与考点精(经典).doc》由会员分享,可在线阅读,更多相关《平面向量知识点与考点精(经典).doc(20页珍藏版)》请在三一办公上搜索。
1、平面向量知识点与2013考点精讲知识网络向量的概念向量的运算向量的运用向量的加、减法实数与向量的积向量的数量积平面向量的基本定理及坐标表示向量的坐标运算物理学中的运用几何中的运用两向量平行的充要条件两向量垂直的充要条件向量的夹角向量的模两点间的距离文档来自于网络搜索第1讲 向量的概念与线性运算 知 识 梳理 1平面向量的有关概念:(1)向量的定义:既有_大小又有方向_的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的_长度_表示向量的大小,用_箭头所指的方向_表示向量的方向.用字母a,b,或用,表示.文档来自于网络搜索特别提醒: 1) 模:向量的长度叫向量的模,记作|a|或|.2)
2、 零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.3) 单位向量:长度为1个长度单位的向量叫做单位向量.4) 共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.5) 相等的向量:长度相等且方向相同的向量叫相等的向量.2向量的线性运算1.向量的加法:(1)定义:求两个向量和的运算,叫做向量的加法.如图,已知向量a,b,在平面内任取一点,作a,b,则向量叫做a与b的和,记作a+b,即 a+b特殊情况: 对于零向量与任一向量a,有 a a a(2)法则:_三角形法则_,_平行四边形法则_(3)运算律:_ a+b=b+a;_,_(a+b)+c=a+(b+c)._文档来自
3、于网络搜索2.向量的减法:(1)定义:求两个向量差的运算,叫做向量的减法. 减法的三角形法则作法:在平面内取一点O, 作= a, = b, 则= a - b 即a - b可以表示为从向量b的终点指向向量a的终点的向量注意:1) 表示a - b强调:差向量“箭头”指向被减数2) 用“相反向量”定义法作差向量,a - b = a +(-b) 显然,此法作图较繁,但最后作图可统一abc a - b = a + (-b) a - b3.实数与向量的积:(1)定义:实数与向量a的积是一个向量,记作a,规定:|a|=|a|.当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当=0时,a=0.
4、文档来自于网络搜索(2)运算律:(a)=()a, (+)a=a+a, (a+b)=a+b.特别提醒:1) 向量的加、减及其与实数的积的结果仍是向量。2) 重要定理:向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b=a,即bab=a(a0).文档来自于网络搜索向量 重 难 点 突 破 1.重点:理解向量及与向量相关的概念,掌握向量的几何表示,掌握向量的加法与减法,会正确运用三角形法则、平行四边形法则文档来自于网络搜索2.难点:掌握向量加法的交换律、结合律,并会用它们进行向量化简与计算3.重难点:.问题1: 相等向量与平行向量的区别答案:向量平行是向量相等的必要条件。问题2
5、:向量平行(共线)与直线平行(共线)有区别答案:直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况。问题3:对于两个向量平行的充要条件:aba=b,只有b0才是正确的.而当b=0时,ab是a=b的必要不充分条件.问题4;向量与有向线段的区别:(1)向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;文档来自于网络搜索(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段【新题导练】题型1. 概念判析例1判断下列各命题是否正确(1)零向量没有方向 (2)若(3)单位向量都相等 (4) 向量就是有向线
6、段文档来自于网络搜索(5)两相等向量若共起点,则终点也相同 (6)若,则;(7)若,则 (8)若四边形ABCD是平行四边形,则(9) 的充要条件是且;解题思路:正确理解向量的有关概念,以概念为判断依据,或通过举反例说明。解析:解:(1) 不正确,零向量方向任意, (2) 不正确,说明模相等,还有方向 (3) 不正确,单位向量的模为1,方向很多 (4) 不正确,有向线段是向量的一种表示形式 (5)正确, (6)正确,向量相等有传递性 (7)不正确,因若,则不共线的向量也有,。(8) 不正确, 如图 (9)不正确,当,且方向相反时,即使,也不能得到;文档来自于网络搜索【名师指引】对于有关向量基本概
7、念的考查,可以从概念的特征入手,也可以从通过举出反例而排除或否定相关命题。文档来自于网络搜索考点一: 向量及与向量相关的基本概念1.【2012高考浙江文7】设a,b是两个非零向量。A.若|a+b|=|a|-|b|,则abB.若ab,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数,使得b=aD.若存在实数,使得b=a,则|a+b|=|a|-|b|【答案】C【命题意图】本题考查的是平面向量,主要考查向量加法运算,向量的共线含义,向量的垂直关系。【解析】利用排除法可得选项C是正确的,|ab|a|b|,则a,b共线,即存在实数,使得ab如选项A:|ab|a|b|时,a,b可为
8、异向的共线向量;选项B:若ab,由正方形得|ab|a|b|不成立;选项D:若存在实数,使得ab,a,b可为同向的共线向量,此时显然|ab|a|b|不成立文档来自于网络搜索2.【2012高考四川文7】设、都是非零向量,下列四个条件中,使成立的充分条件是( )A、且 B、 C、 D、【答案】解析若使成立,则选项中只有D能保证,故选D.点评本题考查的是向量相等条件模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.文档来自于网络搜索考点二: 向量的加、减法【指引】掌握向量加减的定义及向量加法的交换律、结合律等基础知识在求解时需将杂乱的向量运算式有序化处理,必要时也可化减为加,减
9、低出错律 文档来自于网络搜索题型2: 结合图型考查向量加、减法3. (2009)在所在的平面上有一点,满足,则与的面积之比是( )A B C D解题思路: 本题中的已知向量都集中体现在三角形中为此,可充分利用向量加减法的三角形法则实施求解文档来自于网络搜索BCAP5-1-2【解析】由,得,即,所以点是边上的第二个三等分点,如图所示.故【名师指引】三角形中两边对应向量已知,可求第三边所对应的向量值得注意的是,向量的方向不能搞错当向量运算转化成代数式运算时,其运算过程可仿照多项式的加减运算进行文档来自于网络搜索4如图,在ABC中,D、E为边AB的两个三等分点,=3a,=2b,求,文档来自于网络搜索
10、ABCDE解析: =+ = 3a+2b,文档来自于网络搜索因D、E为的两个三等分点,故=ab =,文档来自于网络搜索 =3aab =2ab,文档来自于网络搜索=2abab=ab文档来自于网络搜索考点三: 向量数乘运算及其几何意义题型1: 三点共线问题例4 设是不共线的向量,已知向量,若A,B,D三点共线,求k的值解题思路:证明存在实数,使得解析:, 使得【指引】1、逆向应用向量加法运算法则,使得本题的这种证法比其他证法更简便,值得一提的是,一个向量拆成两个向量的和,一定要强化目标意识文档来自于网络搜索2、这是一个重要结论,要牢记。题型2: 用向量法解决几何问题 基础巩固训练1. 判断下列命题是
11、否正确,并说明理由:(1)共线向量一定在同一条直线上。()(2)所有的单位向量都相等。()(3)向量共线,共线,则共线。()(4)向量共线,则()(5)向量,则。()(6)平行四边形两对边所在的向量一定是相等向量。()2. 在四边形ABCD中,“”是“四边形ABCD为梯形”的文档来自于网络搜索A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件3已知向量,若向量共线,则下列关系一定成立的是( )A、 B、 C、 D、或4D、E、F分别是ABC的BC、CA、AB上的中点,且, ,给出下列命题,其中正确命题的个数是( )文档来自于网络搜索 A、1 B、2 C、3 D、4文档来自
12、于网络搜索5已知:,则下列关系一定成立的是( )A、A,B,C三点共线 B、A,B,D三点共线C、C,A,D三点共线 D、B,C,D三点共线 6若则向量的关系是( ) A平行 B重合 C垂直 D不确定ABCD 综合拔高训练7如图,已知,用表示,则( )A B CD答案:B解析:8已知+=,-=,用、表示= 。答案: 9已知,且,试求t关于k的函数。答案: 10如图,在OAB中,AD与BC交于M点,设,(1)试用和表示向量(2)在线段AC上取一点E,线段BD上取一点F,使EF过M点,设,。文档来自于网络搜索求证:。第2讲 平面向量的基本定理与坐标表示 知 识 梳理 1平面向量基本定理:如果,是同
13、一平面内的两个_不共线_不共线向量,那么对于这一平面内的_任一_向量,有且只有_一对实数1,2使=1+2文档来自于网络搜索特别提醒: (1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一 1,2是被,唯一确定的数量2平面向量的坐标表示 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个_单位向量_ 、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,文档来自于网络搜索我们把叫做向量的(直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做
14、向量的坐标表示与相等的向量的坐标也为特别地,特别提醒:设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示文档来自于网络搜索3平面向量的坐标运算(1) 若,则=,= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差(2) 若,则 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标(3)若和实数,则实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标4向量平行的充要条件的坐标表示:设=(x1, y1) ,=(x2, y2) 其中 ()的充要条件是 重 难 点 突 破 1.重点:(1)了解平面向量基本定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 知识点 考点 经典
链接地址:https://www.31ppt.com/p-3841244.html