反馈控制电路课件.ppt
《反馈控制电路课件.ppt》由会员分享,可在线阅读,更多相关《反馈控制电路课件.ppt(40页珍藏版)》请在三一办公上搜索。
1、第7章 反馈控制电路,7.1 概述,7.2 反馈控制电路的基本原理与分析方法,7.3 自动增益控制电路,7.4 自动频率控制(AFC)电路,7.5 锁相环路(PLL),7.6 锁相环的典型应用,7.1 概述,为了提高通信和电子系统的性能指标,或者实现某些特定的要求,必须采用自动控制方式。由此,各种类型的反馈控制电路便应运而生了。,反馈控制电路可分为三类,继续,自动增益控制(Automatic Gain Control,简称AGC),自动频率控制(Automatic Frequency Control,简称AFC),自动相位控制(Automatie Phase Control,简称APC),自动
2、相位控制电路又称为锁相环路(Phase Locked Loop,简称PLL),是应用最广的一种反馈控制电路。,返回,7.2 反馈控制电路的基本原理与分析方法,在反馈控制电路里,比较器、控制信号发生器、可控器件、反馈网络四部分构成了一个负反馈闭合环路。,根据参考信号的不同情况,反馈控制电路的工作情况有两种。,(1)参考信号xr(t)不变,恒定为xro,(2)参考信号xr(t)变化,返回,7.2.2 数学模型,将反馈控制电路近似作为一个线性系统分析。由于直接采用时域分析法比较复杂,所以采用复频域分析法,根据反馈控制电路的组成方框图,可画出用拉氏变换表示的数学模型,图中Xr(s),Xe(s),Xc(
3、s),Xi(s),Xy(s)和Xf(s)分别是,xr(t),xe(t),xc(t),xi(t),xy(t)和xf(t)的拉氏变换。,比较器输出的误差信号xe(t)通常与xr(t)和xf(t)的差值成正比,设比例系数为kp,则有,xe(t)=kpxr(t)-xf(t),写成拉氏变换式,有Xe(s)=kpXr(s)-Xf(s),可控器件作为线性器件,有 xy(t)=kc xc(t),kc是比例系数。写成拉氏变换式,有Xy(s)=kc Xc(s),实际电路中一般都包括滤波器,其位置可归纳在控制信号发生器或反馈网络中,所以将这两个环节看作线性网络。其传递函数分别为,闭环传递函数,误差传递函数,7.3
4、自动增益控制电路,自动增益控制(AGC)电路是某些电子设备特别是接收设备的重要辅助电路之一,其主要作用是使设备的输出电平保持为一定的数值。因此也称自动电平控制(ALC)电路。,7.3.1 AGC电路的工作原理,1.电路组成框图,设输入信号振幅为Ui,输出信号振幅为Uy,可控增益放大器增益为Ag(uc),是控制信号uc的函数,则有 Uy=Ag(uc)Ui,返回,7.4 自动频率控制(AFC)电路,AFC电路也是一种反馈控制电路。它与AGC电路的区别在于控制对象不同,AGC电路的控制对象是信号的电平,而AFC电路的控制对象则是信号的频率。其主要作用是自动控制振荡器的振荡频率。,7.4.1 AFC电
5、路的组成和基本特性,1.AFC电路的组成,(1)频率比较器,频率比较器的输出误差电压ue与这两个输入信号的频率差有关,而与这两个信号的幅度无关,ue为,ue=kp(r-y),式中,kp在一定的频率范围内为常数,实际上就是鉴频跨导。,常用的频率比较电路有两种形式:一是鉴频器,二是混频-鉴频器。,返回,7.5 锁相环路(PLL),锁相环路(Phase locked loop缩写PLL)是一种相位自动控制电路,其作用是实现环路输出信号与输入信号之间无误差的频率跟踪,仅存在某一固定的相位差。,PLL电路广泛应用于,返回,继续,7.5.1 锁相环的基本原理,一、锁相环的组成部件,PLL是一个相位负反馈系
6、统,可对输入信号的频率与相位实施跟踪。,三个基本部分构成一个负反馈环。,PD,LF,VCO,返回,继续,1、鉴相器(PD),即,vi(t)/i(t),vo(t)/o(t),vd(t)/e(t),正弦特性,三角波特性,锯齿波特性等,其中最基本的是正弦波特性,它可用一个模拟乘法器与低通滤波器串接而成。,鉴相特性的形式有许多种,如:,如果设环路输入信号:,PLL环输出的反馈信号:,经过相乘,并滤除和频分量,可得输出的误差电压为:,其中,为输入信号的瞬时相位差。,由上式可得鉴相器的数学模型,如下图所示,,返回,继续,2、环路滤波器LF,环路滤波器具有低通特性,其主要作用是滤除鉴相器输出端的高频分量和噪
7、声,经LF后得到一个平均电压 用来控制VCO的频率变化,常见的滤波器有以下几种形式。,vd(t),vc(t),RC积分滤波器,vd(t),vc(t),无源比例积分滤波器,vd(t),vc(t),有源比例积分滤波器,RC积分滤波器,传输函数:,返回,继续,休息1,休息2,无源比例积分滤波器,有源比例积分滤波器,如果将F(s)中的s用微分算子p替代,可写出滤波器的输出电压 与输入信号 之间的微分方程:,其中,为微分算子,由上式可得环路滤波器的电路模型如右图所示。,返回,继续,休息1,休息2,3、压控振荡器(VCO),压控振荡器:是瞬时频率 控制的振荡器。其控制特性可用压控特性曲线来描述,如右图所示
8、。,K0:压控灵敏度,由于VCO的输出反馈到鉴相器,而从锁相环的控制作用来看,VCO对鉴相器起作用的不是其频率而是相位,故对上式积分即可求出相位:,压控振荡器数学模型如右图所示。,返回,继续,休息1,休息2,二、锁相环路相位模型和基本方程,1、相位模型,将上述锁相环的三个基本部件的模型按环路组成框图联接起来,即可构成锁相环路相位模型,如下图所示:,2、基本方程,根据锁相环路相位模型,可得到以相位形式表示的基本微分方程:,环路的微分方程为:,返回,继续,休息1,休息2,3、环路工作的定性分析,设输入信号为固定频率的正弦信号(即 均为常量),由于,代入环路的微分方程可得:,左边第二项:,由以上分析
9、可得:,结论:闭合环路中任何时刻满足:瞬时频差+控制频差=固有频差。,返回,继续,休息1,休息2,三、锁相环路的工作原理,设压控振荡器的固有振荡频率为,而当环路闭合瞬间,外输入信号角频率 与 即不相同也不相干,则鉴相器输出的差拍电压为:,失锁状态,如果环路固有角频差 环路低通滤波器的通频带,则差拍电压 将被滤除,而不能形成控制电压,压控振荡器输出角频率 不变化即,则,即:环路的瞬时频差=固有频差环路此时处于失锁状态。,返回,继续,休息1,休息2,锁定状态,如果 十分接近,即固有频差,则差拍电压 不会被环路滤波器滤除而形成控制电压,去控制压控振荡器,VCO产生中心频率为 的调频信号,VCO的瞬时
10、振荡频率 将以 为中心在一定范围内来回摆动,即环路产生了控制频差,此时鉴相器输出电压是一个较小的直流电压,环路进入锁定状态。,返回,继续,牵引捕捉状态,当 介于上述两者之间时,如果VCO的瞬时频率 围绕 为中心摆动的范围小,至使 不可能摆动到 处时,环路不能立即入锁。此时VCO输出的调频波,其调制频率就是差拍频率,与输入信号 经鉴相器PD鉴相,输出一个正弦波与调频波的差拍电压:,如果令:,另有,其中,返回,继续,跟踪状态,例如:,则,返回,继续,四、锁相环性能分析,1.同步带宽,设环路已处于锁定状态,当缓慢改变输入信号频率使固有频差值向正或负方向逐步增大时,由于环路的自身调节作用,能够维持环路
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反馈 控制电路 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3808990.html