安全科学基础理论课件.ppt
《安全科学基础理论课件.ppt》由会员分享,可在线阅读,更多相关《安全科学基础理论课件.ppt(67页珍藏版)》请在三一办公上搜索。
1、第2章 安全科学基础理论,2.1 安全科学的哲学基础,一、安全与危险的统一性和矛盾性 二、安全科学的联系观和系统观 三、安全中的质变与量变 1、流变与突变的相对性 2、流变和突变的层次性 3、流变和突变的相互转化 四、安全问题的简单性和复杂性,精确性和模糊性五、安全事件的必然性和偶然性,2.1 安全科学的哲学基础,一、安全与危险的统一性与矛盾性(一)安全的相对性 1绝对安全状态不存在 2安全标准是相对的 3对安全的认识是不断深化的(二)危险的绝对性 危险存在于一切系统的任何时间和空间中。(三)安全与危险的矛盾统一性 1对立性:安全度越高危险势就越小;安全度越小危险势就越大。2统一性:互相依存,
2、共处统一体中 存在着向对方转化的趋势,2.1 安全科学的哲学基础,二、安全科学的联系观和系统观客观世界普遍联系的是唯物辩证法观点之一。安全科学欲反映对安全与危险造成影响的因素的内在规律性,必须全面地分析各要素,利用各个学科已取得的成果,对开放的大系统进行分析和综合,找出安全的客观规律和实现途径。分析中要注意区分主要原因和次要原因,内因和外因、直接原因和间接原因等,在全面分析的基础上又要集中力量抓主要矛盾。在安全领域中,各种安全和危险要素很多,叠加在一起整体影响力会大大增加,所以为了实现系统总体功能向有利的方向发展,我们必须对各要素统筹兼顾,增加安全因子的整体功能,削弱危险因子的整体功能。决不能
3、头痛医头、彼此隔离,那样会大大降低系统的安全功能。,2.1 安全科学的哲学基础,三、安全中的质变与量变哲学中的量变与质变,在安全科学中表现为流变与突变。-来自恩格斯在自然辩证法中的话。统一性表现在三个方面:1流变与突变的相对性。离开了流变,就无所谓突变;离开了突变,流变也无从谈起。2流变与突变的层次性在不同物质层次上,流变和突变有具体表现形式。低层次的突变,高层次可能属于流变。3流变与突变的相互转化,2.1 安全科学的哲学基础,四、安全问题的简单性、精确性和模糊性(一)简单性和复杂性 1简单性:(1)复杂系统可分解成简单要素、单元(2)复杂系统内外部的联系遵循简单的规律。2复杂性:安全系统中包
4、含无穷多层次的矛盾,形成极为复杂的结构和机制,与外部世界又有多种多样的联系,存在多种相互作用。,2.1 安全科学的哲学基础,(二)精确性和模糊性(难点)安全科学的认识,总是从模糊走向精确,模糊和精确是辨证统一的。模糊性可以说明精确性,适当的模糊反而精确。但是,模糊定性描述的边界太广,将会降低安全程度。在具体情况下,有必要处理好精确性和模糊性的关系。,2.1 安全科学的哲学基础,五、安全事件的必然性和偶然性必然性就是客观事物的联系和发展中不可避免,一定如此的趋势。偶然性是在事物发展过程中由于非本质的原因而产生的事件,它在事物的发展过程中可能出现,也可能不出现,可以这样出现,也可以那样出现。比如:
5、具有自燃倾向的煤在富氧和蓄热的条件下必然自燃,但条件的具备带有很大的偶然性,且这种偶然性完全服从于火灾系统内部隐藏的必然性。二者相互联系,相互依赖,在一定条件下相互转化。,2.1 安全科学的哲学基础,马克思哲学是世界观又是认识世界、改造世界的方法论,搞安全要以它为指导,做到:1.一切从实际出发2.在普遍联系中把握事物的本质3.在动态中把握安全规律4.矛盾分析法,2.2 安全科学的数学物理基础,一、基本逻辑运算和逻辑函数(一)基本逻辑运算1847年英国数学家布尔发表了逻辑的数学分析,1854年又发表了思维的规律,这是把逻辑数学化的一次成功的尝试。因此至今人们仍把逻辑代数称之为布尔代数。它比普通代
6、数简单,因为它的变量仅有01两个;变量01并不表示两个数值,而是表示两种不同的逻辑状态;如是与否,真与假,高与低,有与无,开与闭等;在逻辑代数中,最基本的逻辑有3种:与或非;用逻辑代数符号表示也称:与门,或门,非门;可以用一个表来表示Boole代数的基本逻辑运算。,2.2 安全科学的数学物理基础,1.集合的并、交、补运算,为直观起见,用文氏图(Venn Diagram)表示。,(1)集合的并仍为集合,图(a),阴影集合C=AB,集合C为集合A和B的并,或C为A和B的和,符号为,可称并,也可称加,中文表示或的意思(即A和B至少发生一个)。,(2)集合的交 仍为集合,图(b),阴影集合C=AB,集
7、合C为集合A和B的交,或C为A和B的积,符号,可称交,也可称乘,中文表示与、且的意思(即A和B必须同时发生)。,(3)集合的补 也是集合图(c),阴影集合,集合C 为集合B的补,或C为B的对立集合,符号“”,“”也可“”,可称“补”,也可称非,中文表示“不是”之意。,2.2 安全科学的数学物理基础,1、与运算也叫逻辑乘运算,简称逻辑乘,表示输入变量为a、b时,输出z=a.b,即决定事件z的条件a与b全部具备时,事件z才会发生,否则不会发生。2、或运算也叫逻辑加运算,简称逻辑加。表示输入变量为a、b时,输出Z=a+b,即决定事件z的条件a或b只要一个或两个全具备时z才会发生。当a与b都不具备时,
8、z才不会发生。3、非运算也叫逻辑求反运算,简称逻辑非(或逻辑否定)。表示输入变量为a时,输出z=a,读作a非。即决定事件z的条件为a时,z与a相反,a存在z则不会发生,反之亦然。(二)逻辑变量与逻辑函数 一般来讲,如果输入变量a,b,c的取值确定之后,输出变量z的值也就确定了。那么,就称z是abc的逻辑函数,并写成:z=F(abc)在逻辑代数中,不管是变量还是函数,它们只有两个取值(0与1)。,2.2 安全科学的数学物理基础,(三)布尔代数的运算法则(1)幂等法则 或(2)交换法则 或(3)结合法则 或(4)分配法则 或(5)吸收法则,2.2 安全科学的数学物理基础,二、随机事件与概率运算(一
9、)随机事件 可以看作在相同的一组条件下,进行一系列试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切的结果,即呈现出不确定性。在数学上把这类现象称为“随机现象”,也称“随机事件”,简称为“事件”。1子事件:如果事件A发生必然导致事件B的出现,则称事件A是事件B的子事件 2和事件:如果事件A发生或者事件B发生(两事件A、B中至少有一个发生)必然导致事件C发生,称事件C为事件A与B的和事件 3积事件:在任试验中,若A事件发生,B事件也同时发生,我们把两个事件同时发生的这事件称为A与B的积 4.互斥事件:设A、B是两个互斥事件,若事件A与事件B不能同时发生、则称事件A与
10、事件B是互斥(不相容)事件,2.2 安全科学的数学物理基础,5事件的逆事件:在试验中,事件A与事件B中必然有一个发生,且仅有一个发生,则称事件A和事件B互逆,又称A是B的对立事件6差事件:有A、B两事件,如果C发生就是事件A发生且事件B不发生的一个事件,我们则称事件C为事件A与事件B的差,记作CA-B,2.2 安全科学的数学物理基础,B,B,B,A,B,子事件,和事件,积事件,互斥事件,2.2 安全科学的数学物理基础,A,A,A,S,A,B,对立事件,差事件,2.2 安全科学的数学物理基础,(二)频率与概率1、频率 若随机事件A在n次试验中发生了m次,则比值mn称为随机事件A的频率(或相对频率
11、),记作W(A),用公式表示如下:由于,所以随机事件的频率值分子0与1之间。必然事件的频率恒等于1;不可能事件的频率恒等于0。在一组条件下,重复做n次相互独立的试验,设m为在n次试验中事件A发生的次数。如果对于大量的试验(即n很大),频率mn稳定在某一数值q左右摆动,则称q为事件A在这组条件下发生的概率。记作:,且 0 1,2.2 安全科学的数学物理基础,2、概率的统计定义定义:在同一条件下进行n次重复试验,其中事件人出现m次,事件 A的频率mn随试验次数的变化稳定在某一个数值P,则定义事件 A的概率为P,则定义事件 A的概率为P,记为。一般,数值P很难等到准确值,因此,实际上当n充分大时,以
12、事件A的频率作为事件A的概率的近似值,即:由定义可以看出事件的概率与频率一样,有下列几个性质:;,2.2 安全科学的数学物理基础,3概率的古典定义 定义:一个随机试验,若:只有有限个可能的结果(基本事件);每个结果的出现都是等可能的。则称这样的随机现象模型为古典概率。在古典概率中,如果基本事件的总数是n,而且事件A包含了其中的m个,则事件A的概率定义为:,2.2 安全科学的数学物理基础,4、独立事件的概率计算 在一组随机事件中,按事件的影响关系,又可分为独立事件与排斥事件。若A事件的发生与否,并不影响B事件的概率,反之亦然,则称两事件相互独立。即独立事件是一组概率互不影响的事件。设事件A,B,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安全 科学 基础理论 课件
链接地址:https://www.31ppt.com/p-3788791.html