矿井通风与安全ppt课件.ppt
《矿井通风与安全ppt课件.ppt》由会员分享,可在线阅读,更多相关《矿井通风与安全ppt课件.ppt(190页珍藏版)》请在三一办公上搜索。
1、矿井通风与安全,主讲:采矿高级工程师汪丰乐,第一章 矿井空气,第一节 矿井空气的主要成分第二节 矿井空气中的主要有害气体第三节 矿井气候条件,第二章 矿井通风,第一节 通风压力与阻力第二节 矿井通风系统第三节 采区通风第四节 掘进通风第五节 矿井风量的测算,第三章 矿井瓦斯,第一节 煤层瓦斯含量第二节 瓦斯涌出第三节 瓦斯爆炸及其预防第四节 瓦斯喷出和煤与瓦斯突出及其预防第五节 瓦斯抽放,第四章 矿 尘,第一节 矿尘的产生及其危害第二节 煤尘爆炸及其预防第三节 煤矿尘肺病及其防治第四节 矿山综合防尘,第五章 矿井防灭火,第一节 矿井火灾的发生第二节 矿井防火第三节 矿井灭火,第六章 矿井防治水
2、,第一节 地面防治水第二节 井下防治水第三节 矿井透水事故的处理,第七章 矿井救护,第一节 矿山救护队第二节 矿工自救第三节 现场急救,第一章 矿井空气,利用机械或自然通风动力,使地面空气进入井下,并在井巷中作定向和定量地流动,最后排出矿井的全过程称为矿井通风。目的、主要任务保证矿井空气的质量符合要求。第一 节 矿井空气成份定义:地面空气进入矿井以后即称为矿井空气。一、地面空气的组成地面空气是由干空气和水蒸汽组成的混合气体,亦称为湿空气。干空气是指完全不含有水蒸汽的空气,由氧、氮、二氧化碳、氩、氖和其他一些微量气体所组成的混合气体。干空气的组成成分比较稳定,其主要成分如下。湿空气中含有水蒸气,
3、但其含量的变化会引起湿空气的物理性质和状态变化。气体成分 按体积计 按质量计 备 注 氧气(O2)20.96 23.32 惰性稀有气体氦、氮气(N2)79.0 76.71 氖、氩、氪、二氧化碳(CO2)0.04 0.06 氙等计在氮气中,二、矿井空气的主要成分及基本性质 新鲜空气:井巷中用风地点以前、受污染程度较轻的进风巷道内的空气,污浊空气:通过用风地点以后、受污染程度较重的回风巷道内的空气,1氧气(O2)氧气是维持人体正常生理机能所需要的气体,人体维持正常生命过程所需的氧气量,取决于人的体质、精神状态和劳动强度等。人体输氧量与劳动强度的关系 劳动强度 呼吸空气量(L/min)氧气消耗量(L
4、/min)休 息 轻 劳 动 中度劳动 重 劳 动 极重劳动,当空气中的氧浓度降低时,人体就可能产生不良的生理反应,出现种种不舒适的症状,严重时可能导致缺氧死亡。矿井空气中氧浓度降低的主要原因有:人员呼吸;煤岩和其他有机物的缓慢氧化;煤炭自燃;瓦斯、煤尘爆炸;此外,煤岩和生产过程中产生的各种有害气体,也使空气中的氧浓度相对降低。2二氧化碳(CO2)二氧化碳不助燃,也不能供人呼吸,略带酸臭味。二氧化碳比空气重(其比重为),在风速较小的巷道中底板附近浓度较大;在风速较大的巷道中,一般能与空气均匀地混合。矿井空气中二氧化碳的主要来源是:煤和有机物的氧化;人员呼吸;碳酸性岩石分解;炸药爆破;煤炭自燃;
5、瓦斯、煤尘爆炸等。,3氮气(N2)氮气是一种惰性气体,是新鲜空气中的主要成分,它本身无毒、不助燃,也不供呼吸。但空气中含氮量升高,则势必造成氧含量相对降低,从而也可能造成人员的窒息性伤害。正因为氮气具有的惰性,因此可将其用于井下防灭火和防止瓦斯爆炸。矿井空气中氮气主要来源是:井下爆破和生物的腐烂,有些煤岩层中也有氮气涌出,灭火人为注氮。三、矿井空气主要成分的质量(浓度)标准 采掘工作面进风流中的氧气浓度不得低于20;二氧化碳浓度不得超过;总回风流中不得超过;当采掘工作面风流中二氧化碳浓度达到或采区、采掘工作面回风道风流中二氧化碳浓度超过时,必须停工处理。,第二节 矿井空气中的有害气体,空气中常
6、见有害气体:CO、NO2、SO2、NH3、H2。一、基本性性质、一氧化碳(CO)一氧化碳是一种无色、无味、无臭的气体。相对密度为,微溶于水,能与空气均匀地混合。一氧化碳能燃烧,当空气中一氧化碳浓度在1375范围内时有爆炸的危险。主要危害:血红素是人体血液中携带氧气和排出二氧化碳的细胞。一氧化碳与人体血液中血红素的亲合力比氧大250300倍。一旦一氧化碳进入人体后,首先就与血液中的血红素相结合,因而减少了血红素与氧结合的机会,使血红素失去输氧的功能,从而造成人体血液“窒息”。0.08%,40分钟引起头痛眩晕和恶心,0.32%,510分钟引起头痛、眩晕,30分钟引起昏迷,死亡。主要来源:爆破;矿井
7、火灾;煤炭自燃以及煤尘瓦斯爆炸事故等。,、硫化氢(H2S)硫化氢无色、微甜、有浓烈的臭鸡蛋味,当空气中浓度达到即可嗅到,但当浓度较高时,因嗅觉神经中毒麻痹,反而嗅不到。硫化氢相对密度为,易溶于水,在常温、常压下一个体积的水可溶解个体积的硫化氢,所以它可能积存于旧巷的积水中。硫化氢能燃烧,空气中硫化氢浓度为时有爆炸危险。主要危害:硫化氢剧毒,有强烈的刺激作用;能阻碍生物氧化过程,使人体缺氧。当空气中硫化氢浓度较低时主要以腐蚀刺激作用为主,浓度较高时能引起人体迅速昏迷或死亡。0.0050.01%,12小时后出现眼及呼吸道刺激,0.0150.02%主要来源:有机物腐烂;含硫矿物的水解;矿物氧化和燃烧
8、;从老空区和旧巷积水中放出。、二氧化氮(NO2)二氧化氮是一种褐红色的气体,有强烈的刺激气味,相对密度为,易溶于水。主要危害:二氧化氮溶于水后生成腐蚀性很强的硝酸,对眼睛、呼吸道粘膜和肺部有强烈的刺激及腐蚀作用,二氧化氮中毒有潜伏期,中毒者指头出现黄色斑点。0.01%出现严重中毒。主要来源:井下爆破工作。,4.二氧化硫(SO2)二氧化硫无色、有强烈的硫磺气味及酸味,空气中浓度达到即可嗅到。其相对密度为,易溶于水。主要危害:遇水后生成硫酸,对眼睛及呼吸系统粘膜有强烈的刺激作用,可引起喉炎和肺水肿。当浓度达到 时,眼及呼吸器官即感到有强烈的刺激;浓度达时,短时间内即有致命危险。主要来源:含硫矿物的
9、氧化与自燃;在含硫矿物中爆破;以及从含硫矿层中涌出。5.氨气(NH3)无色、有浓烈臭味的气体,相对密度为,易溶于水,。空气浓度中达30时有爆炸危险。主要危害:氨气对皮肤和呼吸道粘膜有刺激作用,可引起喉头水肿。主要来源:爆破工作,注凝胶、水灭火等;部分岩层中也有氨气涌出。,6.氢气(H2)无色、无味、无毒,相对密度为。氢气能自燃,其点燃温度比沼气低100200,主要危害:当空气中氢气浓度为474时有爆炸危险。主要来源:井下蓄电池充电时可放出氢气;有些中等变质的煤层中也有氢气涌出、或煤氧化。二、矿井空气中有害气体的安全浓度标准 矿井空气中有害气体对井下作业人员的生命安全危害极大,因此,规程对常见有
10、害气体的安全标准做了明确的规定,矿井空气中有害气体的最高容许浓度有害气体名称 符号 最高容许浓度/%一氧化碳 氧化氮(折算成二氧化氮)NO2 二氧化硫 SO2硫化氢 H2氨 NH3,第三节 矿井气候矿井气候:矿井空气的温度、湿度和流速三个参数的综合作用。这三个参数也称为矿井气候条件的三要素。一、矿井气候对人体热平衡的影响新陈代谢是人类生命活动的基本过程之一。人体散热主要是通过人体皮肤表面与外界的对流、辐射和汗液蒸发这三种基本形式进行的。对流散热取决于周围空气的温度和流速;辐射散热主要取决于环境温度;蒸发散热取决于周围空气的相对湿度和流速。人体热平衡关系式:qm-qw=qd+qz+qf+qchq
11、m人体在新陈代谢中产热量,取决于人体活动量;qW人体用于做功而消耗的热量,qm-qw人体排出的多余热量;qd人体对流散热量,低于人体表面温度,为负,否则,为正;qz汗液蒸发或呼出水蒸气所带出的热量;qf人体与周围物体表面的辐谢散热量,可正,可负;qch人体由热量转化而没有排出体外的能量;人体热平衡时,qch=0;当外界环境影响人体热平衡时,人体温度升高qch0,人体温度降低,qch0,矿井气候条件的三要素是影响人体热平衡的主要因素。空气温度:对人体对流散热起着主要作用。相对湿度:影响人体蒸发散热的效果。风速:影响人体的对流散热和蒸发散热的效果。对流换热强度随风速而增大。同时湿交换效果也随风速增
12、大而加强。如有风的天气,凉衣服干得快。二、衡量矿井气候条件的指标1.干球温度干球温度是我国现行的评价矿井气候条件的指标之一。特点:在一定程度上直接反映出矿井气候条件的好坏。指标比较简单,使用方便。但这个指标只反映了气温对矿井气候条件的影响,而没有反映出气候条件对人体热平衡的综合作用。2.湿球温度 湿球温度是可以反映空气温度和相对湿度对人体热平衡的影响,比干球温度要合理些。但这个指标仍没有反映风速对人体热平衡的影响。,3.等效温度 等效温度定义为湿空气的焓与比热的比值。它是一个以能量为基础来评价矿井气候条件的指标。4.同感温度 同感温度(也称有效温度)是1923年由美国采暖工程师协会提出的。这个
13、指标是通过实验,凭受试者对环境的感觉而得出的同感温度计算图。5.卡他度 卡他度是1916年由英国L.希尔等人提出的。卡他度用卡他计测定。卡他度分为:干卡他度、湿卡他度 干卡他度:反映了气温和风速对气候条件的影响,但没有反映空气湿度的影响。为了测出温度、湿度和风速三者的综合作用效果,K d2 湿卡他度(Kw):是在卡他计贮液球上包裹上一层湿纱布时测得的卡他度,其实测和计算方法完全与干卡他度相同。,三、矿井气候条件的安全标准 我国现行评价矿井气候条件的指标是干球温度。1982年国务院颁布的矿山安全条例第53条规定,矿井空气最高容许干球温度为28。,第二章 矿井通风,第一节 通风压力与阻力 一、自然
14、风压及其形成和计算1、自然通风 由自然因素作用而形成的通风叫自然通风。冬季:空气柱0-1-2比5-4-3的 平均温度较低,平均 空气密 度较大,导致两空气柱作用 在2-3水平面上的重力不等。它使 空气源源不断地从井 口1流入,从井口5流出。夏季:相反。自然风压:作用在最低水平两侧空气柱重力差,2、自然风压的计算 根据自然风压定义,上图所示系统的自然风压HN可用下式计算:为了简化计算,一般采用测算出0-1-2和5-4-3井巷中空气密度的平均值m1和m2,用其分别代替上式的1和2,则上式可写为:注意:1)自然风压的计算必须取一闭合系统。2)进风系统和回风系统必须取相同的标高。3)一般选取最低点作为
15、基准面。二、自然风压的影响因素及变化规律 自然风压影响因素 HN=f(Z)=f(T,P,R,),Z 1、矿井某一回路中两侧空气柱的温差是影响HN的主要因素。2、空气成分和湿度影响空气的密度,因而对自然风压也有一定影响,但影响较小。,3、井深。HN与矿井或回路最高与最低点间的高差Z成正比。4、主要通风机工作对自然风压的大小和方向也有一定影响。三、自然风压的控制和利用1、新设计矿井在选择开拓方案、拟定通风系统时,应充分考虑利用地形和当地气候特点。2、根据自然风压的变化规律,应适时调整主通风机的工况点,使其既能满足矿井通风需要,又可节约电能。3、在建井时期,要注意因地制宜和因时制宜利用自然风压通风,
16、如在表土施工阶段可利用自然通风;在主副井与风井贯通之后,有时也可利用自然通风;有条件时还可利用钻孔构成回路。4、利用自然风压做好非常时期通风。一旦主要通风机因故遭受破坏时,便可利用自然风压进行通风。,5、在多井口通风的山区,尤其在高瓦斯矿井,要掌握自然风压的变化规律,防止因自然风压作用造成某些巷道无风或反向而发生事故。如图是四川某矿因自然风压使风流反向示意图。ABBCEFA系统的自然风压为:DBBCED系统的自然风压为:自然风压与主要通风机作用方向相反。相当于在平硐口A和进风立井口D各安装一台抽风机(向外)。,设AB风流停滞,对回路ABDEFA和ABBCEFA可分别列出压力平衡方程:式中:HS
17、 风机静压,Pa;Q DBBC风路风量,m3/S;RD、RC分别为DB和BBC分支风阻,NS2/m8。两式相除:此即AB段风流停滞条件式。当上式变为 则AB段风流反向。由此可知防止AB风路风流反向的措施有:(1)加大RD;(2)增大HS;(3)在A点安装风机向巷道压风。,四、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。由流体力学可知,无论层流还是紊流,以风流压能损失来反映的摩擦阻力可用下式来计算:Pa 无因次系数,即摩擦阻力系数,通过实验求得。d圆形风管直径,非圆形管用当量直径;,1尼古拉兹实验 实际流体在流动过程中
18、,沿程能量损失一方面(内因)取决于粘滞力和惯性力的比值,用雷诺数Re来衡量;另一方面(外因)是固体壁面对流体流动的阻碍作用,故沿程能量损失又与管道长度、断面形状及大小、壁面粗糙度有关。其中壁面粗糙度的影响通过值来反映。19321933年间,尼古拉兹把经过筛分、粒径为的砂粒均匀粘贴于管壁。砂粒的直径就是管壁凸起的高度,称为绝对糙度;绝对糙度与管道半径r的比值/r 称为相对糙度。以水作为流动介质、对相对糙度分别为1/15、1/60、1/126、1/256、1/507六种不同的管道进行试验研究。对实验数据进行分析整理,在对数坐标纸上画出与Re的关系曲线,如图3-2-1所示。结论分析:区层流区。当Re
19、2320(即lgRe3.36)时,不论管道粗糙度如何,其实验结果都集中分布于直线上。这表明与相对糙度/r无关,只与Re有关,且=64/Re。与相对粗糙度无关,区过渡流区。2320Re4000(即3.36lgRe3.6),在此区间内,不同相对糙度的管内流体的流态由层流转变为紊流。所有的实验点几乎都集中在线段上。随Re增大而增大,与相对糙度无明显关系。区水力光滑管区。在此区段内,管内流动虽然都已处于紊流状态(Re4000),但在一定的雷诺数下,当层流边层的厚度大于管道的绝对糙度(称为水力光滑管)时,其实验点均集中在直线上,表明与仍然无关,而只与Re有关。随着Re的增大,相对糙度大的管道,实验点在较
20、低Re时就偏离直线,而相对糙度小的管道要在Re较大时才偏离直线。区紊流过渡区,即图中所示区段。在这个区段内,各种不同相对糙度的实验点各自分散呈一波状曲线,值既与Re有关,也与/r有关。,区水力粗糙管区。在该区段,Re值较大,管内液流的层流边层已变得极薄,有,砂粒凸起高度几乎全暴露在紊流核心中,故Re对值的影响极小,略去不计,相对糙度成为的唯一影响因素。故在该区段,与Re无关,而只与相对糙度有关。摩擦阻力与流速平方成正比,故称为阻力平方区,尼古拉兹公式:,2层流摩擦阻力当流体在圆形管道中作层流流动时,从理论上可以导出摩擦阻力计算式:=可得圆管层流时的沿程阻力系数:古拉兹实验所得到的层流时与Re的
21、关系,与理论分析得到的关系完全相同,理论与实验的正确性得到相互的验证。层流摩擦阻力和平均流速的一次方成正比。3、紊流摩擦阻力 对于紊流运动,=f(Re,/r),关系比较复杂。用当量直径de=4S/U代替d,代入阻力通式,则得到紊流状态下井巷的摩擦阻力计算式:,五、摩擦阻力系数与摩擦风阻1摩擦阻力系数 矿井中大多数通风井巷风流的Re值已进入阻力平方区,值只与相对糙度有关,对于几何尺寸和支护已定型的井巷,相对糙度一定,则可视为定值;在标准状态下空气密度3。对上式,令:称为摩擦阻力系数,单位为 kg/m3 或 2/m4。则得到紊流状态下井巷的摩擦阻力计算式写为:标准摩擦阻力系数:通过大量实验和实测所
22、得的、在标准状态(03)条件下的井巷的摩擦阻力系数,即所谓标准值0值,当井巷中空气密度3时,其值应按下式修正:,2摩擦风阻Rf 对于已给定的井巷,L、U、S都为已知数,故可把上式中的、L、U、S 归结为一个参数Rf:Rf 称为巷道的摩擦风阻,其单位为:kg/m7 或 2/m8。工程单位:kgf.s2/m8,或写成:k。2/m8=9.8 k Rff(,S,U,L)。在正常条件下当某一段井巷中的空气密度一般变化不大时,可将R f 看作是反映井巷几何特征的参数。则得到紊流状态下井巷的摩擦阻力计算式写为:此式就是完全紊流(进入阻力平方区)下的摩擦阻力定律。六、井巷摩擦阻力计算方法 新建矿井:查表得0
23、Rf hf 生产矿井:hf Rf 0,七、生产矿井一段巷道阻力测定1、压差计法 用压差计法测定通风阻力的实质是测量风流两点间的势能差和动压差,计算出两测点间的通阻力。其中:右侧的第二项为动压差,通过测定、两断面的风速、大气压、干湿球温度,即可计算出它们的值。第一项和第三项之和称为势能差,需通过实际测定。1)布置方式及连接方法,)阻力计算 压差计“”感受的压力:压差计“”感受的压力:故压差计所示测值:设 且与1、2断面间巷道中空气平均 密度相等,则:式中:Z12为1、2断面高差,h 值即为1、2两断面压能与位能和的差值。根据能量方程,则1、2巷道段的通风阻力hR12为:把压差计放在1、2断面之间
24、,测值是否变化?,2、气压计法由能量方程:hR12=(P1-P2)+(1v12/2-2v22/2)+m12gZ12用精密气压计分别测得1,2断面的静压P1,P2用干湿球温度计测得t1,t2,t1,t2,和1,2,进而计算1,2用风表测定1,2断面的风速v1,v2。m12为1,2断面的平均密度,若高差不大,就用算术平均值,若高差大,则有加权平均值;Z121,2断面高差,从采掘工程平面图查得。可用逐点测定法,一台仪器在井底车场监视大气压变化,然后对上式进行修正。hR12=(P1-P2)+P12(+(1v12/2-2v22/2)+m12gZ12,例题3-3某设计巷道为梯形断面,S=8m2,L=100
25、0m,采用工字钢棚支护,支架截面高度d0=14cm,纵口径=5,计划通过风量Q=1200m3/min,预计巷道中空气密度3,求该段巷道的通风阻力。解 根据所给的d0、S值,由附录4附表4-4查得:0=284.21042/m4则:巷道实际摩擦阻力系数 Ns2m4巷道摩擦风阻巷道摩擦阻力,八、局部阻力及其计算 和摩擦阻力类似,局部阻力hl一般也用动压的倍数来表示:式中:局部阻力系数,无因次。层流 计算局部阻力,关键是局部阻力系数确定,因v=Q/S,当确定后,便可用,几种常见的局部阻力产生的类型:、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矿井 通风 安全 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3754279.html