第12章《全等三角形》期末复习ppt课件.ppt
《第12章《全等三角形》期末复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《第12章《全等三角形》期末复习ppt课件.ppt(29页珍藏版)》请在三一办公上搜索。
1、全等三角形复习,八年级数学第12章,全等形,全等三角形,性质,应用,全等三角形对应边(高线、中线)相等,全等三角形对应角(对应角的平分线)相等,全等三角形的面积相等,SSS,SAS,ASA,AAS,HL,解决问题,角的平分线的性质,角平分线上的一点到角的两边距离相等,到角的两边的距离相等的点在角平分线上,结论,判定三角形全等必须有一组对应边相等.,二、全等三角形识别思路复习,如图,已知ABC和DCB中,AB=DC,请补充一个条件-,使ABC DCB。,思路1:,找夹角,找第三边,找直角,已知两边:,ABC=DCB(SAS),AC=DB(SSS),A=D=90(HL),如图,已知C=D,要识别A
2、BC ABD,需要添加的一个条件是-。,思路2:,找任一角,已知一边一角(边与角相对),(AAS),CAB=DAB或者 CBA=DBA,A,C,B,D,如图,已知1=2,要识别ABC CDA,需要添加的一个条件是-,思路3:,已知一边一角(边与角相邻):,A,B,C,D,2,1,找夹这个角的另一边,找夹这条边的另一角,找边的对角,AD=CB,ACD=CAB,D=B,(SAS),(ASA),(AAS),如图,已知B=E,要识别ABC AED,需要添加的一个条件是-,思路4:,已知两角:,找夹边,找一角的对边,AB=AE,AC=AD,或 DE=BC,(ASA),(AAS),例1.如图,在ABC中,
3、两条角平分线BD和CE相交于点哦,若BOC=1200,那么A的度数是.,600,例2、如图,ABAC,BDCD,BHCH,图中有几组全等的三角形?它们全等的条件是什么?,H,D,C,B,A,解:有三组。在ABH和ACH中 AB=AC,BH=CH,AH=AHABHACH(SSS);,BD=CD,BH=CH,DH=DHDBHDCH(SSS),在ABH和ACH中AB=AC,BD=CD,AD=ADABDACD(SSS);,在ABH和ACH中,解:,E、F分别是AB,CD的中点(),又AB=CD,AE=CF,在ADE与CBF中,AE=,=,ADECBF(),AE=AB CF=CD(),例3.如图,已知A
4、B=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.,ADECBF,A=C,线段中点的定义,CF,AD,AB,CD,SSS,ADECBF,全等三角形对应角相等,已知,CB,A=C(),=,例4.如图,E,F在BC上,BE=CF,AB=CD,ABCD。求证:AFDE,ABFDCE(SAS),AFB=DEC,AF/DE,ABCD,ADBC(已知),12 34,在ABC与CDA中,12(已证)AC=AC(公共边)34(已证),ABCCDA(ASA),AB=CD BC=AD(全等三角形对应边相等),证明:连结AC.,例5.如图,ABCD,ADBC,那么AB=CD吗
5、?为什么?AD与BC呢?,A,B,C,D,2,3,4,1,例6.如图,已知AB=AD,B=D,1=2,求证:BC=DE,证明:1=2,1+EAC=2+EAC,BAC=DAE,在ABC和ADE中,ABCADE(AAS),BC=DE,解 CE AB,DF AC(已知)AEC=BFD=Rt AF=BE(已知)即AE+EF=BF+EFAE=BF AC=BD RtACE RtBDF(HL)CE=DF(全等三角形的对应边相等),A,B,C,D,E,F,例7.如图,已知CE AB,DF AB,AC=BD,AF=BE,则CE=DF。请说明理由。,例8.已知:ACB=ADB=900,AC=AD,P是AB上任意一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形 12 全等 三角形 期末 复习 ppt 课件
链接地址:https://www.31ppt.com/p-3754134.html