红外吸收峰的频率课件.ppt
《红外吸收峰的频率课件.ppt》由会员分享,可在线阅读,更多相关《红外吸收峰的频率课件.ppt(80页珍藏版)》请在三一办公上搜索。
1、红外光谱法,Infrared Analysis,基本内容,一、概论二、傅里叶红外光谱仪三、红外光谱的物理基础四、红外谱图解析基础知识五、试样的处理和制备六、红外光谱法的应用 1.定性分析 2.定量分析,/nm,/cm-1,一、概论:,红外光区划分:通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。,当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。,定义
2、:,甲基环己烷的红外光谱图,物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。通过比较大量已知化合物的红外光谱,发现:组成分子的各种基团,如O-H、N-H、C-H、C=C、C=O和CC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。,分子吸收红外辐射后,由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰。因为(振动量子数的差值)=1时,L=,所以 基频峰的位置(L)等于分子的振动频率。在红外吸收光谱上除基频峰外,还有振动
3、能级由基态(=0)跃迁至第二激发态(=2)、第三激发态(=3),所产生的吸收峰称为倍频峰。由=0跃迁至=2时,=2,则L=2,即吸收的红外线谱线(L)是分子振动频率的二倍,产生的吸收峰称为二倍频峰。,右图是双原子分子的能级示意图,图中EA和EB表示不同能量的电子能级,在每个电子能级中因振动能量不同而分为若干个=0、1、2、3的振动能级,在同一电子能级和同一振动能级中,还因转动能量不同而分为若干个J=0、1、2、3的转动能级。,二倍频峰,由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:基频峰(01)2885.9 cm-1 最强二倍频峰(02)5668.0 cm-
4、1 较弱三倍频峰(03)8346.9 cm-1 很弱四倍频峰(04)10923.1 cm-1 极弱五倍频峰(05)13396.5 cm-1 极弱 除此之外,还有合频峰(1+2,21+2,),差频峰(1-2,21-2,)等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。,红外光谱(0.751000m),远红外(转动区)(25-1000 m),中红外(振动区)(2.525 m),近红外(泛频)(0.752.5 m),倍频,分子振动转动,分子转动,分区及波长范围 跃迁类型,(常用区),3.红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,
5、几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过IR谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快。7)与色谱等联用(GC-FTIR)具有强大的定性功能。,二、仪器类型与结构两种类型:色散型 干涉型(付立叶变换红外光谱仪),Nicolet公司:AVATAR 360 FT-IR,Fourier变换红外光谱仪(FTIR)工作原理图,Fourier变换红外光谱仪的特点:(1)扫描速度极快,多次累加可有效地降低噪声(2)具有很高的分辨率 通常Fourier变换 红外光谱仪分辨率达0.1 0.005 cm-1。
6、(3)灵敏度高 可检测10-8g数量级的样品。除此之外,还有光谱范围宽(100010 cm-1);测量精度高,重复性可达0.1%;杂散光干扰小;样品不受因红外聚焦而产生的热效应的影响。,FTIR,分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。通常用分子的偶极矩()来描述分子极性的大小。,三、红外光谱的物理基础:,从经典力学的观点来看,当分子振动伴随着偶极矩的改变时,偶极子的振动会产生电磁波,它和入射的电磁波发生相互作用,产生光的吸收,所吸收光的频率即为分子的振动频率。这种电磁辐射的能量比电子能级跃迁时吸收的能量小得多。吸收能量后振动能级将提高,即分子被激发到较高的振动能级
7、(其中也包含不同的转动能级),从而形成红外吸收光谱。,物理基础:,偶极子在交变电场中的作用示意图,并非所有的振动都会产生红外吸收,只有发生偶极矩变化(0)的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的;=0的分子振动不能产生红外振动吸收,称为非红外活性的。,电场,磁场,产生红外吸收的条件:每种分子都可能有几种不同的振动方式,当入射光的频率与分子的振动频率一致,且分子的振动能引起分子的瞬间偶极矩变化时,分子即吸收红外光,在红外光谱上有反映。,同核双原子分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。,一、双原子分子的振动 分子中的原子以平衡点为中心,以非常
8、小的振幅(与原子核之间的距离相比)作周期性的振动,可近似的看作简谐振动。这种分子振动的模型,以经典力学的方法可把两个质量为m1和m2的原子看成钢体小球,连接两原子的化学键设想成无质量的弹簧,弹簧的长度r就是分子化学键的长度。,分子振动:,Hooks Law(for stretching vibration),k:力常数,Ncm-1,与化学键的强度有关(键长越短,键能越小,k越大),m1和m2分别为化学键所连的两个原子的质量,单位为克,即:化学键的振动频率(红外吸收峰的频率)与键强度成正比,与成键原子质量成反比。,对于相同化学键的基团,波数与相对原子质量平方根成反比。例如C-C、C-O、C-N键
9、的力常数相近,但相对折合质量不同,其大小顺序为C-C C-N C-O,因而这三种键的基频振动峰分别出现在1430 cm-1、1330 cm-1、1280 cm-1附近。上述用经典方法来处理分子的振动是宏观处理方法,或是近似处理的方法。但一个真实分子的振动能量变化是量子化;另外,分子中基团与基团之间,基团中的化学键之间都相互有影响,除了化学键两端的原子质量、化学键的力常数影响基本振动频率外,还与内部因素(借光因素)和外部因素(化学环境)有关。,二、多原子分子的振动 多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其振动光谱比双原子分子要复杂。但是可以把它们的振动分解成许多简单的基本
10、振动,即简正振动。1.简正振动 简正振动的振动状态是分子质心保持不变,整体不转动,每个原子都在其平衡位置附近做简谐振动,其振动频率和相位都相同,即每个原子都在同一瞬间通过其平衡位置,而且同时达到其最大位移值。分子中任何一个复杂振动都可以看成这些简正振动的线性组合。,2.简正振动的基本形式 一般将振动形式分成两类:伸缩振动和变形振动。,(1)伸缩振动(Stretching vibrations)原子沿键轴方向伸缩,键长发生变化而键角不变的振动称为伸缩振动,用符号表示。它又可以分为对称伸缩振动(s)和不对称伸缩振动(as)。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动。,(2)变形振动(弯
11、曲振动或变角振动)(Bending Vibrations)基团键角发生周期变化而键长不变的振动称为变形振动。变形振动又分为面内变形和面外变形振动。,面内变形振动又分为剪式()和平面摇摆振动()。,面外变形振动又分为扭曲振动()和非平面摇摆()。,由于变形振动的力常数比伸缩振动的小,因此,同一基团的变形振动都在其伸缩振动的低频端出现。3.基本振动的理论数 简正振动的数目称为振动自由度,每个振动自由度相当于红外光谱图上一个基频吸收带。,设分子由n个原子组成,每个原子在空间都有3个自由度,原子在空间的位置可以用直角坐标中的3个坐标x、y、z表示,因此,n个原子组成的分子总共应有3n个自由度,即3n种
12、运动状态。但在这3n种运动状态中,包括3个整个分子的质心沿x、y、z方向平移运动和3个整个分子绕x、y、z轴的转动运动。这6种运动都不是分子振动,因此,振动形式应有(3n-6)种。,但对于直线型分子,若贯穿所有原子的轴是在x方向,则整个分子只能绕y、z轴转动,因此,直线性分子的振动形式为(3n-5)种。,水-非线型分子的振动形式:3n-6=9-6=3二氧化碳-线型分子的振动形式:3n-5=9-5=4,一个官能团的每种简正振动都有其特定的振动频率,似乎都应有相应的红外吸收带。实际上,绝大多数化合物在红外光谱图上出现的峰数远小于理论上计算的振动数,这是由如下原因引起的:(1)没有偶极矩变化的振动,
13、不产生红外吸收;(2)相同频率的振动吸收重叠,即简并;(3)仪器不能区别频率十分接近的振动,或吸收带 很弱,仪器无法检测;(4)有些吸收带落在仪器检测范围之外。,例如,线型分子二氧化碳在理论上计算其基本振动数为4,共有4个振动形式,在红外图谱上有4个吸收峰。但在实际红外图谱中,只出现667 cm-1和2349 cm-1两个基频吸收峰。这是因为对称伸缩振动偶极矩变化为零,不产生吸收,而面内变形和面外变形振动的吸收频率完全一样,发生简并。(CO2的简正振动形式),吸收谱带的强度 红外吸收强度取决于跃迁的几率:ab 跃迁偶极矩,红外吸收谱带的强度取决于分子振动时偶极矩的变化,而偶极矩与分子结构的对称
14、性有关。振动的对称性越高,振动中分子偶极矩变化越小,谱带强度也就越弱。一般地,极性较强的基团(如C=0,C-X等)振动,吸收强度较大;极性较弱的基团(如C=C、C-C、N=N等)振动,吸收较弱。100 非常强峰(vs)20 100 强峰(s)10 20 中强峰(m)1 10 弱峰(w),红外电磁波的电场矢量,(1)特征频率区:红外光谱中4000-1300cm-1的高频区称为特征频率区。主要是X-H、三键()及双键(C=C,C=O,C=C)的伸缩振动。,(2)指纹区:红外光谱的1000cm-1 650cm-1的低频区称为指纹区。主要是各种单键(C-N,C-O,C-C)的伸缩振动及各种弯曲振动的吸
15、收峰。,(3)相关峰:习惯上把同一官能团的不同振动方式而产生的红外吸收峰称为相关峰。如甲 基(-CH3)2960cm-1(as),2870cm-1(s),1470cm-1、1380cm-1(C-H剪式及面内摇摆)。,四、红外谱图解析基础知识:,(4)已知物的鉴定:若被测物的IR与已知物的谱峰位置和相对强度完全一致,则可确认为一种物质(注意仪器的灵敏度及H2O的干扰)。,(5)未知物的鉴定:可推断简单化合物的结构。对复杂的化合物,需要UV、NMR、MS的数据。,一、基团频率区和指纹区(一)基团频率区 中红外光谱区可分成4000 cm-1 1300(1800)cm-1和1800(1300)cm-1
16、 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1(1300 cm-1)600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。,基团频率区可分为三个区域:(1)4000 2500 cm
17、-1 X-H伸缩振动区,X可以是O、N、C或S等原子。,基团频率和特征吸收峰,O-H基的伸缩振动出现在3650 3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。,当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol.dm-3时,在3650 3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 3200 cm-1 出现一个宽而强的吸收峰。,胺和酰胺的N-H伸缩振动也出现在35003100 cm-1,因此,可能会对O-H伸缩振
18、动有干扰。C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约30002800 cm-1,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。,不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。不饱和的双键=C-H的吸收出现在3010
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 红外 吸收 频率 课件
链接地址:https://www.31ppt.com/p-3732308.html