第八章输入数据分析课件.ppt
《第八章输入数据分析课件.ppt》由会员分享,可在线阅读,更多相关《第八章输入数据分析课件.ppt(44页珍藏版)》请在三一办公上搜索。
1、一、输入数据的收集,第八章 输入数据分析,二、分布的识别,三、参数估计,四、拟合度检验,五、相关性分析,?模型的输入数据哪里来?,输入数据分析,生产仿真结果的准确性,生产模型的准确建立,仿真数据的准确性,输入数据是仿真模型的动力,GIGO(garbage in garbage out),系统的仿真依靠这些原型系统的运行数据,缺乏这些数据的实验和实验值的提取,仿真也就毫无意义。,收集原始数据,基本统计分布的辨识,参 数 估 计,拟合度检验,否,是,是输入数据分析的基础,需要分析的经验,对收集的方法、数据需要做预先的设计和估算。因此这是一个关键的、细致的工作。,通过统计的数学手段(计数统计、频率分
2、析、直方图制作等),得出统计分布的假设函数(如:正态分布、负指数分布、Erlang分布等),根据统计特征,计算确定系统的假设分布参数。,运用统计分布的检验方法,对假设的分布函数进行可信度检验。通常采用的是2检验。,正确输入数据,一、输入数据的收集,做好仿真计划,详细规划仿真所需要收集的数据在收集数据过程中要注意分析数据数据的均匀组合收集的数据要满足独立性的要求数据自相关性的检验,根据问题的特征,进行仿真的前期研究。分析影响系统的关键因素。从相关事物的观察入手,尽量收集相关的数据。为此可以事先设计好调研表格,并注意不断完善和修改调研方式,使收集的数据更符合仿真对象的数据需要。,数据的收集与仿真的
3、试运行是密切相关的,应当是边收集数据、边进行仿真的试运行。然而系统仿真是一项专业性很强的工作,要正确认识“仿真”的含义,抓住仿真研究的关键,避免求全、求精。确信所收集的数据足以确定仿真中的输入分量,而对仿真无用或影响不显著的数据就没有必要去多加收集。,针对仿真所收集的各个数据需要进行相关性检验。为了确定在两个变量之间是否存在相关。要建立两个变量的散布图。通过统计方法确定相关的显著性。,尽量把均匀数据组合在一组里。校核在相继的时间周期里以及在相继日子内的一时间周期里的数据的均匀性。当校核均匀性时,初步的检验是看一下分布的均值是相同。,考察一个似乎是独立的观察序列数据存在自相关的可能性。自相关可能
4、存在于相继的时间周期或相继的顾客中。例如,第i个顾客的服务时间与(i+n)个顾客的服务时间相关。,数据收集过程中的注意事项,二、分布的识别,直方图的构造方法如下:,分组区间的组数依赖于观察次数以及数据的分散或散布的程度。一般分组区间组数近似等于样本量的平方根。即:,如果区间太宽(m太小),则直方图太粗或呈短粗状,这样,它的形状不能良好地显示出来。,如果区间太窄,则直方图显得凹凸不平不好平滑,合适的区间选择(m值)是直方图制作,分布函数分析的基础。,二、分布的识别,二、分布的识别,离散数据汽车数量(p215),连续数据电子元器件寿命(p217),三、参数估计,设某一个随机过程X,其n个抽样样本为
5、x1,x2,xn,该样本的均值为该样本的方差为如果离散数据已按频数分组,则,k是X中不相同数值的个数即分组数,fi是X中数值Xj的观察频数,仿真中常用的一些分布参数建议值,三、参数估计,?理论分布和实际分布的差异程度?,拟合度检验,四、拟合度检验,Ei 是在该分组区间的期望频数。每一分组区间的期望频数是 Ei=n pi,这里pi是理论值,是对应第i个分组区间的假设概率。,2拟合度检验,式中,Oi是在第i个分组区间的观察频数。Oi=ni/n,可以证明:02近似服从具有自由度 f=k-s-1的2分布。这里 s 表示由采样统计量所估计的假设分布的参数个数。假设检验:H0:随机变量X服从参数是由参数估
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 输入 数据 分析 课件

链接地址:https://www.31ppt.com/p-3731311.html