管道第五章之管道的抗震设计计算课件.ppt
《管道第五章之管道的抗震设计计算课件.ppt》由会员分享,可在线阅读,更多相关《管道第五章之管道的抗震设计计算课件.ppt(50页珍藏版)》请在三一办公上搜索。
1、第五章 管道抗震设计计算,地震是最严重的自然灾害之一,例:1923年日本关东大地震,震级7.9级,震中烈度11度,距震中90公里的横滨市几乎被化为废墟,东京被烧掉三分之二,死亡近十万人;1960年智利大地震,震级8.9级,震中烈度11度,引起地面下沉、滑坡塌方、火山爆发、海啸,沿海一带的城镇、港口等大都被海浪冲走或陷入海里;1976年的唐山大地震,震级7.8级,震中烈度11度,唐山市房屋绝大部分倒塌。2008年的汶川大地震,震级8.0级,震中烈度11度,汶川大地震是中国一九四九年以来破坏性最强、波及范围最大的一次地震。全世界平均每年发生5级以上的地震130次。,地震使管道破坏并产生严重的次生灾
2、害,地震对管道的影响:断层土壤液化地面波动管道抗震的设计规定:设防地震动峰加速度为0.10.15g以上(地震烈度为七度)。,5-1 工程抗震常识,1、地震波地震时,地下积蓄的变形能量以波的形式释放,从震源向四周传播。地震波主要分为体波和面波。体波主要有两种成分:压缩波(P波):又称纵波或疏密波,其质点的振动方向与波的前进方向一致,可在固体或液体中传播。其特点是周期短、振幅小。剪切波(S波):又称横波或等容波,其介质的振动方向与波的前进方向垂直,仅能在固体中传播。其特点是周期较长、振幅大。压缩波比剪切波的传播速度高。,P波和S波示意,面波乐甫波(L波)和瑞利波(R波),当体波从基岩传播到上层土时
3、,经分层地质界面的多次反射和折射,在地表面形成的一种次生波。,地震时,压缩波最先到达,然后是剪切波,再后是面波。,2、震级,指在一次地震中地壳所释放出来的能量。释放的能量越多,震级越大;地震的震级一般采用里氏(里克特Richter)震级;一个6级地震释放的能量相当于一个2万吨级的原子弹;地震对地面的影响程度与许多因素有关,除了震级以外,还与震源深度、震中距等因素有关。,3、烈度,地震烈度是指某一个地区、地面及房屋建筑等工程结构遭受到一次地震影响的强烈程度。一次地震对于不同的地区有多个烈度,即地震烈度。震级与烈度不能混淆。,如唐山地震,震级7.8级,震源深度1216km,震中烈度11度,各地烈度
4、如下:,我国采用12度地震烈度法,烈度I,在特别易于感受的条件下,只有少数人才能感觉到;烈度II,只有在建筑物上层部位静止着的人们方能感觉到,易于摆动的悬吊物有摇摆现象;烈度III,在建筑物上层部位的多数人可感觉到,但大部分人不认为是地震。停着的汽车轻微摆动,有如卡车经过时的震动,可测知其持续时间。烈度IV,白天室内多数人,室外少数人可感知,盘碟、门窗摇动,墙壁作响,有如重卡车碰撞建筑物的感觉,停着的汽车相当摇动;,烈度V,人人可感知,多数人睡中醒来,窗玻璃有摇动,灰泥抹面裂缝,放置不稳的器物倾倒,电线杆、树木、塔状体的摇动有时可见,钟表停摆;烈度VI,人人受惊,跑出室外,重家具移动,灰泥抹面
5、有脱落,烟窗有倾倒,稍有受灾;烈度VII,人人都跑出室外,质量好的建筑物几乎不受损害,一般的则有若干受灾,质量不好的有显著受灾。烟窗折断,人在行驶着的汽车中也可感受到地震;,烈度VIII,质量好的建筑物也受有或多或少的灾害,一般的建筑物有相当的灾害,且有一部分倒塌。质量不好的建筑物遭受大的破坏,贴板墙面错动脱落,烟窗、柱、纪念碑、墙壁倾倒。泥沙少量喷出,井水发生变化,汽车行驶有障碍;烈度IX,质量好的建筑物也有相当的震害,建筑物、构筑物的基础错位偏移,地面裂开,地下埋设管道破坏。,烈度X,质量好的木造房屋倒塌,多数砖石结构和架桥结构连同基础一起遭到破坏,地面开裂,钢轨弯曲,斜坡与堤防滑移;烈度
6、XI,砖石结构几乎全部倒塌,桥梁破坏。地面全面出现裂缝,地下埋设管道不能使用,软弱地基发生滑移,钢轨显著弯曲。烈度XII,全部遭到震灾,地面波动传播可知,地形变动,物体被抛起来。,也可根据最大加速度来确定地震烈度,美国地震烈度表,基本烈度,基本烈度是指某地区在今后一定时间内,在一般场地条件下可能遭受的最大地震烈度。按照国家地震局颁布的中国地震烈度区划图,全国分为:五度、六度、七度、八度、九度共五个区。,基本烈度,本地震烈度区划图上所标示的地震烈度值,系指在50年期限内,一般场地条件下,可能遭遇超越概率为10%的烈度值。,抗震设防烈度,抗震设防烈度是按国家规定的权限批准作为一个地区抗震设防依据的
7、地震烈度。我国抗震设防范围为七、八、九度。九度以上的地区不宜建包括油罐在内的工业设施。,5-2 场地及地基土类别的划分,震害表明,同一烈度区内,局部土质条件不同,建筑物的破坏程度差异很大。对地面运动的影响:软弱地基与坚硬地基相比,前者的地面卓越周期长,振幅较大,振动持续时间较长;对地基的稳定和变形的影响:软弱地基易产生不稳定状态和不均匀沉降,甚至发生液化、滑坡、开裂等严重现象,而坚硬地基则很少有这种危险;改变建(构)筑物的动力特性:软弱地基对上部结构有增长周期、改变振型和增大阻尼的作用。,各类地段的划分,场地土的划分,特征周期,5-3 砂土的地震液化,液化使土壤强度减少甚至完全丧失,管道由于支
8、承丧失甚至还可能受到液化土的浮力作用,引起管道上大的变形而破坏。砂土液化的概念:“液化是使任何物质转化为液体状态的行为过程。就无粘性土而言,这种由固体状态变为液体状态的转化是孔隙水压力增大和有效应力减小的结果”。,影响砂土液化的主要因素,砂土的粒度组成均匀的级配易于产生液化,就细砂和粗砂而言,细砂的渗透性比粗砂低,细砂比粗砂更易液化。砂土的密度疏松的砂,孔隙大,易于液化,密实的砂则抗液化。砂层的有效覆盖压力覆盖土层越厚,就相当密闭容器的耐压强度越高,从而减轻了砂土液化对工程结构的影响。,地震的烈度和持续的时间砂土能否液化,由地震所引起的土体内最大剪应力的情况和持续作用的时间来决定,5-4 跨越
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管道 第五 抗震 设计 计算 课件

链接地址:https://www.31ppt.com/p-3731180.html