第2章-电力电子器件课件.ppt
《第2章-电力电子器件课件.ppt》由会员分享,可在线阅读,更多相关《第2章-电力电子器件课件.ppt(67页珍藏版)》请在三一办公上搜索。
1、1/89,2.3.1 晶闸管的结构与工作原理,晶闸管的结构 从外形上来看,晶闸管也主要有螺栓型和平板型两种封装结构。引出阳极A、阴极K和门极(控制端)G三个联接端。内部是PNPN四层半导体结构。,图2-7 晶闸管的外形、结构和电气图形符号 a)外形 b)结构 c)电气图形符号,2/89,2.3.1 晶闸管的结构与工作原理,图2-8 晶闸管的双晶体管模型及其工作原理 a)双晶体管模型 b)工作原理,晶闸管的工作原理 按照晶体管工作原理,可列出如下方程:,式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。,3/89,2.3.1 晶闸管的结构与工
2、作原理,晶体管的特性是:在低发射极电流下 是很小的,而当发射极电流建立起来之后,迅速增大。在晶体管阻断状态下,IG=0,而1+2是很小的。由上式可看出,此时流过晶闸管的漏电流只是稍大于两个晶体管漏电流之和。如果注入触发电流使各个晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA(阳极电流)将趋近于无穷大,从而实现器件饱和导通。由于外电路负载的限制,IA实际上会维持有限值。,由以上式(2-1)(2-4)可得,(2-5),4/89,2.3.1 晶闸管的结构与工作原理,除门极触发外其他几种可能导通的情况 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高
3、光触发这些情况除了光触发由于可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中之外,其它都因不易控制而难以应用于实践。只有门极触发是最精确、迅速而可靠的控制手段。,5/89,2.3.2 晶闸管的基本特性,静态特性 正常工作时的特性 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。,6/89,2.3.2 晶闸管的基本特性,
4、晶闸管的伏安特性 正向特性 当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。,图2-9 晶闸管的伏安特性 IG2 IG1 IG,7/89,2.3.2 晶闸管的基本特性,反向特性 其伏安特性类似二极管的反向特性。晶闸管处于反向阻断状态时,只有极小的反向漏电流通过。当反向电压超过一定限度,到反向击穿
5、电压后,外电路如无限制措施,则反向漏电流急剧增大,导致晶闸管发热损坏。,图2-9 晶闸管的伏安特性 IG2IG1IG,8/89,2.3.2 晶闸管的基本特性,动态特性 开通过程 由于晶闸管内部的正反馈 过程需要时间,再加上外电路 电感的限制,晶闸管受到触发 后,其阳极电流的增长不可能 是瞬时的。延迟时间td(0.51.5s)上升时间tr(0.53s)开通时间tgt=td+tr 延迟时间随门极电流的增 大而减小,上升时间除反映晶 闸管本身特性外,还受到外电 路电感的严重影响。提高阳极 电压,延迟时间和上升时间都 可显著缩短。,图2-10 晶闸管的开通和关断过程波形,9/89,2.3.2 晶闸管的
6、基本特性,关断过程 由于外电路电感的存在,原处于导通状态的晶闸管当外加电压突然由正向变为反向时,其阳极电流在衰减时必然也是有过渡过程的。反向阻断恢复时间trr 正向阻断恢复时间tgr 关断时间tq=trr+tgr 关断时间约几百微秒。在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通,而不是受门极电流控制而导通。,图2-10 晶闸管的开通和关断过程波形,100%,10/89,2.3.3 晶闸管的主要参数,电压定额 断态重复峰值电压UDRM 是在门极断路而结温为额定值时,允许重复加在器件上的正向 峰值电压(见图2-9)。国标规定断态重复峰值电压UDRM为断态不重复峰值电压(即
7、 断态最大瞬时电压)UDSM的90%。断态不重复峰值电压应低于正向转折电压Ubo。反向重复峰值电压URRM 是在门极断路而结温为额定值时,允许重复加在器件上的反向 峰值电压(见图2-8)。规定反向重复峰值电压URRM为反向不重复峰值电压(即反向 最大瞬态电压)URSM的90%。反向不重复峰值电压应低于反向击穿电压。,11/89,2.3.3 晶闸管的主要参数,通态(峰值)电压UT 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电 压。通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。电流定额 通态平均电流 IT(
8、AV)国标规定通态平均电流为晶闸管在环境温度为40C和规定的冷 却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半 波电流的平均值。按照正向电流造成的器件本身的通态损耗的发热效应来定义的。一般取其通态平均电流为按发热效应相等(即有效值相等)的 原则所得计算结果的1.52倍。,12/89,2.3.3 晶闸管的主要参数,维持电流IH 维持电流是指使晶闸管维持导通所必需的最小电流,一般为几十到几百毫安。结温越高,则IH越小。擎住电流 IL 擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。约为IH的24倍 浪涌电流ITSM 指由于电路异常情况引起的并使结温超过额定
9、结温的不重复性最大正向过载电流。,13/89,2.3.3 晶闸管的主要参数,动态参数 开通时间tgt和关断时间tq 断态电压临界上升率du/dt 在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。电压上升率过大,使充电电流足够大,就会使晶闸管误导通。通态电流临界上升率di/dt 在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。如果电流上升太快,可能造成局部过热而使晶闸管损坏。,14/89,2.3.4 晶闸管的派生器件,快速晶闸管(Fast Switching ThyristorFST)有快速晶闸管和高频晶闸管。快速晶闸管的开关时间以及du/dt和di/
10、dt的耐量都有了明显改善。从关断时间来看,普通晶闸管一般为数百微秒,快速晶闸管为数十微秒,而高频晶闸管则为10s左右。高频晶闸管的不足在于其电压和电流定额都不易做高。由于工作频率较高,选择快速晶闸管和高频晶闸管的通态平均电流时不能忽略其开关损耗的发热效应。,15/89,2.3.4 晶闸管的派生器件,双向晶闸管(Triode AC SwitchTRIAC或Bidirectional triode thyristor)可以认为是一对反并联联 接的普通晶闸管的集成。门极使器件在主电极的正反两方向均可触发导通,在第和第III象限有对称的伏安特性。双向晶闸管通常用在交流电路中,因此不用平均值而用有效值来
11、表示其额定电流值。,图2-11 双向晶闸管的电气图形符号和伏安特性a)电气图形符号 b)伏安特性,16/89,2.3.4 晶闸管的派生器件,a),K,G,A,逆导晶闸管(Reverse Conducting ThyristorRCT)是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件,不具有承受反向电压的能力,一旦承受反向电压即开通。具有正向压降小、关断时间短、高温特性好、额定结温高等优点,可用于不需要阻断反向电压的电路中。,图2-12 逆导晶闸管的电气图形符号和伏安特性 a)电气图形符号 b)伏安特性,17/89,2.3.4 晶闸管的派生器件,A,G,K,a),AK,光控晶闸管(Lig
12、ht Triggered ThyristorLTT)是利用一定波长的光照信号触发导通的晶闸管。由于采用光触发保证了主电路与控制电路之间的绝缘,而且可以避免电磁干扰的影响,因此光控晶闸管目前在高压大功率的场合。,图2-13 光控晶闸管的电气图形符 号和伏安特性 a)电气图形符号 b)伏安特性,18/89,2.4 典型全控型器件,2.4.1 门极可关断晶闸管 2.4.2 电力晶体管 2.4.3 电力场效应晶体管 2.4.4 绝缘栅双极晶体管,19/89,2.4 典型全控型器件引言,门极可关断晶闸管在晶闸管问世后不久出现。20世纪80年代以来,电力电子技术进入了一个崭新时代。典型代表门极可关断晶闸管
13、、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。,电力MOSFET,IGBT单管及模块,20/89,2.4.1 门极可关断晶闸管,晶闸管的一种派生器件,但可以通过在门极施加负的脉冲电流使其关断,因而属于全控型器件。GTO的结构和工作原理 GTO的结构 是PNPN四层半导体结 构。是一种多元的功率集成 器件,虽然外部同样引出个 极,但内部则包含数十个甚 至数百个共阳极的小GTO 元,这些GTO元的阴极和门 极则在器件内部并联在一起。,图2-14 GTO的内部结构和电气图形符号各单元的阴极、门极间隔排列的图形 并联单元结构断面示意图 电气图形符号,21/89,2.4.1 门极可关断晶闸管,图2-
14、8 晶闸管的双晶体管模型 及其工作原理 a)双晶体管模型 b)工作原理,GTO的工作原理 仍然可以用如图2-8所示的双晶体管模型来分析,V1、V2的共基极电流增益分别是1、2。1+2=1是器件临界导通的条件,大于1导通,小于1则关断。GTO与普通晶闸管的不同 设计2较大,使晶体管V2控制 灵敏,易于GTO关断。导通时1+2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。,22/89,2.4.1 门极可关断晶闸管,GTO的导通过程与普通晶闸管是一样的,只不过导通时饱和程度较浅。而关断时,给门极加负脉冲,即从门极抽出
15、电流,当两个晶体管发射极电流IA和IK的减小使1+21时,器件退出饱和而关断。GTO的多元集成结构使得其比普通晶闸管开通过程更快,承受di/dt的能力增强。,23/89,2.4.1 门极可关断晶闸管,GTO的动态特性 开通过程与普通晶闸管类似。关断过程 储存时间ts 下降时间tf 尾部时间tt 通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,前沿越陡,ts就越短。使门极负脉冲的后沿缓慢衰减,在tt阶段仍能保持适当的负电压,则可以缩短尾部时间。,图2-15 GTO的开通和关断过程电流波形,24/89,2.4.1 门极可关断晶闸管,GTO的主要参数 GTO的许多参数都和普通晶闸管相
16、应的参数意义相同。最大可关断阳极电流IATO 用来标称GTO额定电流。电流关断增益off 最大可关断阳极电流IATO与门极负脉冲电流最大值IGM之比。off一般很小,只有5左右,这是GTO的一个主要缺点。开通时间ton 延迟时间与上升时间之和。延迟时间一般约12s,上升时间则随通态阳极电流值的增大而 增大。关断时间toff 一般指储存时间和下降时间之和,而不包括尾部时间。储存时间随阳极电流的增大而增大,下降时间一般小于2s。不少GTO都制造成逆导型,类似于逆导晶闸管。当需要承受反向电压时,应和电力二极管串联使用。,25/89,2.4.2 电力晶体管,电力晶体管(Giant Transistor
17、GTR)按英文直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction TransistorBJT)GTR的结构和工作原理 与普通的双极结型晶体管基本原理是一样的。最主要的特性是耐压高、电流大、开关特性好。,26/89,GTR的结构 采用至少由两个晶体管按达林顿接法组成的单元结构,并采用集成电路工艺将许多这种单元并联而成。GTR是由三层半导体(分别引出集电极、基极和发射极)形成的两个PN结(集电结和发射结)构成,多采用NPN结构。,2.4.2 电力晶体管,图2-16 GTR的结构、电气图形符号和内部载流子的流动a)内部结构断面示意图 b)电气图形符号 c)内部
18、载流子的流动,+表示高掺杂浓度,-表示低掺杂浓度,27/89,2.4.2 电力晶体管,图2-16 c)内部载流子的流动,在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为,称为GTR的电流放大系数,它反映了基极电流对集电极电流的控制能力。当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为,单管GTR的 值比处理信息用的小功率晶体管小得多,通常为10左右,采用达林顿接法可以有效地增大电流增益。,(2-9),(2-10),28/89,2.4.2 电力晶体管,GTR的基本特性 静态特性 在共发射极接法时的典 型输出特性分为截止区、放 大区和饱和区三个区域。在电力电子
19、电路中,GTR工作在开关状态,即工 作在截止区或饱和区。在开关过程中,即在截 止区和饱和区之间过渡时,一般要经过放大区。,图2-17 共发射极接法时GTR的输出特性,29/89,2.4.2 电力晶体管,动态特性 开通过程 需要经过延迟时间td和上升时 间tr,二者之和为开通时间ton。增大基极驱动电流ib的幅值并 增大dib/dt,可以缩短延迟时间,同时也可以缩短上升时间,从而 加快开通过程。关断过程 需要经过储存时间ts和下降时 间tf,二者之和为关断时间toff。减小导通时的饱和深度以减 小储存的载流子,或者增大基极 抽取负电流Ib2的幅值和负偏压,可以缩短储存时间,从而加快关 断速度。G
20、TR的开关时间在几微秒以内,比晶闸管和GTO都短很多。,图2-18 GTR的开通和关断过程电流波形,主要是由发射结势垒电容和集电结势垒电容充电产生的。,是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分。,30/89,2.4.2 电力晶体管,GTR的主要参数 电流放大倍数、直流电流增益hFE、集电极与发射极间漏电流Iceo、集电极和发射极间饱和压降Uces、开通时间ton和关断时间toff 最高工作电压 GTR上所加的电压超过规定值时,就会发生击穿。击穿电压不仅和晶体管本身的特性有关,还与外电路的接法有关。发射极开路时集电极和基极间的反向击穿电压BUcbo 基极开路时集电极和发射极
21、间的击穿电压BUceo 发射极与基极间用电阻联接或短路联接时集电极和发射极间的击穿电压BUcer和BUces 发射结反向偏置时集电极和发射极间的击穿电压BUcex 且存在以下关系:,实际使用GTR时,为了确保安全,最高工作电压要比BUceo低得 多。,31/89,2.4.2 电力晶体管,集电极最大允许电流IcM 规定直流电流放大系数hFE下降到规定的1/21/3时所对应的Ic。实际使用时要留有较大裕量,只能用到IcM的一半或稍多一点。集电极最大耗散功率PcM 指在最高工作温度下允许的耗散功率。产品说明书中在给出PcM时总是同时给出壳温TC,间接表示了最高工作温度。,32/89,2.4.2 电力
22、晶体管,GTR的二次击穿现象与安全工作区 当GTR的集电极电压升高至击穿电压时,集电极电流迅速增大,这种首先出现的击穿是雪崩击穿,被称为一次击穿。发现一次击穿发生时如不有效地限制电流,Ic增大到某个临界点时会突然急剧上升,同时伴随着电压的陡然下降,这种现象称为二次击穿。出现一次击穿后,GTR一般不会损坏,二次击穿常常立即导致器件的永久损坏,或者工作特性明显衰变,因而对GTR危害极大。,图2-19 GTR的安全工作区,二次击穿功率,安全工作区(Safe Operating AreaSOA)将不同基极电流下二次击穿的临界点 连接起来,就构成了二次击穿临界线。GTR工作时不仅不能超过最高电压 Uce
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 电子器件 课件
链接地址:https://www.31ppt.com/p-3730564.html