《机械工程控制基础》PPT第四章+系统的频率特性分析教材课件.ppt
《《机械工程控制基础》PPT第四章+系统的频率特性分析教材课件.ppt》由会员分享,可在线阅读,更多相关《《机械工程控制基础》PPT第四章+系统的频率特性分析教材课件.ppt(85页珍藏版)》请在三一办公上搜索。
1、1,第四章 系统的频率特性分析,频率特性概述 频率特性的图示方法 频率特性的特征量 最小相位系统与非最小相位系统 通过谐波,识别系统的传递函数 利用MATLAB分析频率特性,2,频率特性分析是经典控制理论中研究与分析系统特性的主要方法。,4.1 频率特性概述,因此,从某种意义上讲,频率特性法与时域分析法有着本质的不同。频率特性虽然是系统对正弦信号的稳态响应,但它不仅能反映系统的稳态性能,而且可以用来研究系统的稳定性和动态性能。,3,4.1 频率特性概述,(部分分式处理),线性定常系统对谐波输入的稳态响应称为频率响应。,一、频率响应与频率特性 1、频率响应,4,4.1 频率特性概述,5,4.1
2、频率特性概述,根据频率响应的概念,可以定义系统的幅频特性和相频特性。,根据频率特性和频率响应的概念,还可以求出系统的谐波输入 作用下的稳态响应为,2.,6,例4-2,求原函数f(t),s2+3s+2=(s+1)(s+2),两边同乘以(s+1)得,令s=-1,则,4.1 频率特性概述,(部分分式处理),二、,7,同理:,f(t)=L-1F(s)=(-6e-t+14e-2t),4.1 频率特性概述,由,得:,8,4.1 频率特性概述,二、,9,4.1 频率特性概述,二、,10,4.1 频率特性概述,二、,11,4.1 频率特性概述,三、,根据定义来求,此方法麻烦。,12,4.1 频率特性概述,这是
3、对实际系统求取频率特性的一种常用而又重要的方法。因为,如果不知道系统的传递函数或微分方程等数学模型就无法用上面两种方法求取频率特性。在这样的情况下,只有通过实验求得频率特性后才能求出传递函数。这正是频率特性的一个极为重要的作用。,三、,13,根据定义来求,此方法麻烦。,4.1 频率特性概述,三、,14,4.1 频率特性概述,四、,15,这表明系统的频率特性就是单位脉冲响应函数w(t)的Fourer变换,即w(t)的频谱。所以,对频率特性的分析就是对单位脉冲响应函数的频谱分析。,4.1 频率特性概述,五、,(2)频率特性实质上是系统的单位脉冲响应函数的Fourier变换。,16,频率特性的计算量
4、很小,一般都是采用近似的作图方法,简单,直观,易于在工程技术界使用。,可以采用实验的方法,求出系统或元件的频率特性,这对于机理复杂或机理不明而难以列写微分方程的系统或元件,具有重要的实用价值,正因为这些优点,频率特性法在工程技术领域得到广泛的应用。,4.1 频率特性概述,17,4.3 L-R-C串联电路如图所示。假设作用在输入端的电压为。试求通过电阻R的稳态电流i(t)。,系统的传递函数为:,系统的频率特性为:,系统的幅频特性为:,4.1 频率特性概述,解:根据回路电压定律有,六、举例,18,系统的相频特性为:,根据系统频率特性的定义有,系统稳态输出为:,4.1 频率特性概述,19,例4.4
5、系统结构图如图所示。当系统的输入 时,测得系统的输出,试确定该系统的参数n,。,系统的频率特性为,其中,幅频特性为:,相频特性为:,由已知条件知,当=1时,,4.1 频率特性概述,解:系统的闭环传递函数为:,20,4.1 频率特性概述,21,七、机械系统的频率特性(动柔度、动刚度、静刚度),若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度。机械系统的频率特性的倒数称之为机械系统的动刚度。当w0时,系统频率特性的倒数为系统的静刚度。,例4-5:已知机械系统在输入力作用下变形的传递函数为2/(s+1)(mm/kg),求系统的动刚度、动柔度和精刚度。,解:根据动刚度
6、和动柔度的定义有:,4.1 频率特性概述,22,4.2 频率特性的图示方法,频率特性G(jw)以及幅频特性和相频特性都是频率w的函数,因而可以用曲线表示它们随频率变换的关系。用曲线图形表示系统的频率特性,具有直观方便的优点,在系统分析和研究中很有用处。常用的频率特性的图示方法:极坐标图和对数坐标图,一、频率特性的极坐标图频率特性的极坐标图又称Nyquist图,也称幅相频率特性图。,23,4.2 频率特性的图示方法,在复平面G(j)上表示 G(j)的幅值|G(j)|和相角G(j)随频率的改变而变化的关系图,这种图形称为频率特性的极坐标图,又称为nyquist图。,24,4.2 频率特性的图示方法
7、(典型环节的Nyquist图),所以,比例环节频率特性的nyquist图是:,25,4.2 频率特性的图示方法(典型环节的Nyquist图),所以,积分环节频率特性的nyquist图是:,26,4.2 频率特性的图示方法(典型环节的Nyquist图),所以,微分环节频率特性的nyquist图是:,27,4.2 频率特性的图示方法(典型环节的Nyquist图),所以,惯性环节频率特性的nyquist图是:,28,4.2 频率特性的图示方法(典型环节的Nyquist图),所以,微分环节频率特性的nyquist图是:,29,4.2 频率特性的图示方法(典型环节的Nyquist图),30,4.2 频率
8、特性的图示方法(典型环节的Nyquist图),31,4.2 频率特性的图示方法(典型环节的Nyquist图),32,4.2 频率特性的图示方法(典型环节的Nyquist图),33,4.2 频率特性的图示方法(典型环节的Nyquist图),所以,延时环节频率特性的nyquist图是:,34,4.2 频率特性的图示方法(典型环节的Nyquist图),35,4.2 频率特性的图示方法(典型环节的Nyquist图 举例),例1,试绘制其频率特性的Nyquist图。,36,例2 已知某超前网络的传递函数为 试绘制其频率特性的Nyquist图。,法一:解:该网络的频率特性为,其中,幅频特性为:,相频特性为
9、:,实频特性为:,虚频特性为:,u、v满足关系:,又因为u0、v0,系统频率特性的Nyquist曲线为一个位于第一象限半圆。系统频率特性的Nyquist图如图所示。,4.2 频率特性的图示方法(典型环节的Nyquist图举例),37,法二:,因此,可以先作出 的Nyquist图,然后取其反对称曲线,即为 的Nyquist图,最后将 的Nyquist图沿实轴右移1个单位,即得 的Nyquist图如图所示。,4.2 频率特性的图示方法(典型环节的Nyquist图举例),由于:,38,4.2 频率特性的图示方法(典型环节的Nyquist图举例),例3,39,4.2 频率特性的图示方法(典型环节的Ny
10、quist图举例),已知三个不同系统,40,4.2 频率特性的图示方法(典型环节的Nyquist图举例),系统的频率特性:,系统的nyquist图的一般形状:,若nm,则,若nm,则|G(jw)|=const,41,4.2 频率特性的图示方法(典型环节的Bode图),dec(10倍频程),42,4.2 频率特性的图示方法(典型环节的Bode图),43,4.2 频率特性的图示方法(典型环节的Bode图),44,4.2 频率特性的图示方法(典型环节的Bode图),45,4.2 频率特性的图示方法(典型环节的Bode图),46,4.2 频率特性的图示方法(典型环节的Bode图),47,4.2 频率特
11、性的图示方法(典型环节的Bode图),48,4.2 频率特性的图示方法(典型环节的Bode图),49,4.2 频率特性的图示方法(典型环节的Bode图),50,4.2 频率特性的图示方法(典型环节的Bode图),51,4.2 频率特性的图示方法(典型环节的Bode图),52,4.2 频率特性的图示方法(典型环节的Bode图),53,4.2 频率特性的图示方法(典型环节的Bode图),54,4.2 频率特性的图示方法(典型环节的Bode图),关于典型环节的对数幅频特性及其渐进线和对数相频特性的特点归纳如下:,55,4.2 频率特性的图示方法(典型环节的Bode图),绘制系统的bode图的步骤:,
12、56,4.2 频率特性的图示方法(典型环节的Bode图),57,4.2 频率特性的图示方法(典型环节的Bode图),系统bode图的几个特点,系统的频率特性:,58,4.2 频率特性的图示方法(典型环节的Bode图),(解题步骤),59,4.2 频率特性的图示方法(典型环节的Bode图),60,例4.6 试绘制传递函数 的对数幅频特性曲线。,解:将传递函数进行标准化得,其频率特性为,因此,它由一个比例环节(比例系数K=7.5)、一个一阶导前环节(时间常数 即转折频率为)、一个积分环节、一个一阶惯性环节(时间常数,即转折频率为)和一个二阶振荡环节()等五个典型环节组成。,法一:先分别作出五个典型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械工程控制基础 机械工程 控制 基础 PPT 第四 系统 频率特性 分析 教材 课件

链接地址:https://www.31ppt.com/p-3725948.html