《二元一次方程组的应用》课件.pptx
《《二元一次方程组的应用》课件.pptx》由会员分享,可在线阅读,更多相关《《二元一次方程组的应用》课件.pptx(45页珍藏版)》请在三一办公上搜索。
1、,二元一次方程组的应用,一、行程问题,基本数量关系,路程=时间速度,时间=路程/速度,速度=路程/时间,同时相向而行,路程=时间速度之和,同时同向而行,路程=时间速度之差,船在顺水中的速度=船在静水中的速度+水流的速度,船在逆水中的速度=船在静水中的速度-水流的速度,A,B,同时同地同向在同一跑道进行比赛,当男生第一次赶上女生时,男生跑的路程-女生跑的路程=跑道的周长,乙,甲,同时异地追及问题,乙的路程-甲的路程=甲乙之间的距离,例1.某站有甲、乙两辆汽车,若甲车先出发1后乙车出发,则乙车出发后5追上甲车;若甲车先开出30后乙车出发,则乙车出发4后乙车所走的路程比甲车所走路程多10求两车速度,
2、若甲车先出发1后乙车出发,则乙车出发后5追上甲车,解:设甲乙两车的速度分别为x Km/h、y Km/h,根据题意,得,5y=6x,若甲车先开出30后乙车出发,则乙车出发4后乙车所走的路程比甲车所走路程多10,4y=4x+40,解之得,答:甲乙两车的速度分别为50km、60km,例2.一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?,快车长230米,慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟,乙,若两车相向而行,快车从与慢车相
3、遇时到离开慢车,只需18秒钟,18(x+y)=450,解之得,答:快车、慢车的速度分别为15m/s、10m/s,例3甲、乙两人在周长为400的环形跑道上练跑,如果相向出发,每隔2.5min相遇一次;如果同向出发,每隔10min相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度,甲、乙两人在周长为400的环形跑道上练跑,如果相向出发,每隔2.5min相遇一次,甲、乙两人在周长为400的环形跑道上练跑,如果同向出发,每隔10min相遇一次,10(X-Y)=400,解之得,答:甲乙两人的速度分别为100m/min、60m/min,环形跑道追及问题等同于异地追及问题,例4.已知A、B两码头之间
4、的距离为240km,一艏船航行于A、B两码头之间,顺流航行需4小时;逆流航行时需6小时,求船在静水中的速度及水流的速度.,练习.一辆汽车从甲地驶往乙地,途中要过一桥。用相同时间,若车速每小时60千米,就能越过桥2千米;若车速每小时50千米,就差3千米才到桥。问甲地与桥相距多远?用了多长时间?,轮船航向,船在逆水中的速度=船在静水中的速度-水流的速度,船在顺水中的速度=船在静水中的速度+水流的速度,例5.已知A、B两码头之间的距离为240km,一艏船航行于A、B两码头之间,顺流航行需4小时;逆流航行时需6小时,求船在静水中的速度及水流的速度.,解:设船在静水中的速度及水流的速度分别为xkm/h、
5、ykm/h,根据题意,得,答:船在静水中的速度及水流的速度分别为50km/h、10km/h,二、工程问题,工作量=工作时间工作效率,工作效率=工作量/工作时间、,工作时间=工作量/工作效率,例1.某工人原计划在限定时间内加工一批零件.如果每小时加工10个零件,就可以超额完成3 个;如果每小时加工11个零件就可以提前1h完成.问这批零件有多少个?按原计划需多少小时 完成?,解:设这批零件有x个,按原计划需y小时完成,根据题意,得,答:这批零件有77个,按计划需8 小时完成,例2.甲乙两家服装厂生产同一规格的上衣和裤子,甲厂每月(按30天计算)用16天生产上衣,14天做裤子,共生产448套衣服(每
6、套上、下衣各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服,两厂合并后,每月按现有能力最多能生产多少套衣服?,填写下表,16,14,448,12,18,720,解:设该厂用x天生产上衣,y天生产裤子,则共生产()x套衣服,由题意得,448/16+720/12,X+y=30,(448/16+720/12)x=(448/14+720/18)y,所以88x=8813.5=1188,三、商品经济问题,本息和=本金+利息,利息=本金年利率期数利息税,利息所得税=利息金额20,例1李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已
7、知这两种储蓄的年利率的和为3.24,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额20),解:设这两种储蓄的年利率分别是x、y,根据题意得,答:这两种储蓄的年利蓄分别为2.25%、0.09%,例2。某超市在“五一”期间寻顾客实行优惠,规定如下:,(2)若顾客在该超市一次性购物 x元,当小于500元但不小于200元时,他实际付款 元;当x大于或等于500元时,他实际付款 元(用的代数式表示),(1)王老师一次购物600元,他实际付款 元,530,0.9x,0.8x+50,解:设第一次购物的货款为x元,第二次购物的货款为y元,当x200,则,y500,由题意得,当x小于500
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元一次方程组的应用 二元 一次 方程组 应用 课件
链接地址:https://www.31ppt.com/p-3725070.html