开题报告《用户行为分析与精准营销研究》.doc
《开题报告《用户行为分析与精准营销研究》.doc》由会员分享,可在线阅读,更多相关《开题报告《用户行为分析与精准营销研究》.doc(27页珍藏版)》请在三一办公上搜索。
1、中国移动集团级重点研发项目(含联合项目)开题报告一、项目编号及名称:2011_LH_45 用户行为分析与精准营销研究二、项目组:承担子课题题名称负责人及手机、邮箱研究院(牵头单位)用户行为分析与精准营销北京公司(协助单位)统一门户网营精准营销推荐研究广东公司(协助单位)基于应用商品的智能推荐【MM猜你喜欢】研究广东公司(协助单位)精准服务营销平台研发河南公司(协助单位)基于网络数据为基础的家庭-集团用户挖掘四川公司(协助单位)基于互联网的无线音乐用户行为分析工具研究与系统实现四川公司(协助单位)基于智能搜索引擎技术,面向无线音乐用户的个性化搜索结果模型及精准营销模型研究四川公司(协助单位)音乐
2、产品个性化推荐引擎研发浙江公司(协助单位)按照用户、终端、渠道、门户、内容、时间等多维度组合的灵活营销平台研发浙江公司(协助单位)手机上网用户行为分析系统研发三、课题背景和意义3.1 联合项目的研究背景和整体框架移动通信和互联网市场竞争压力越来越大,对于中国移动来讲,除了传统电信运营商竞争的压力、互联网服务提供商也加入到竞争的行列,都瞄准了在3G/4G时代,流量越来越低廉的情形下,在移动通信网上提供越来越丰富的服务和内容。随着用户使用互联网和移动互联网越来越频繁,用户的需求朝着优质、便捷、个性化的方向发展。随着话音业务的逐渐饱和,而数据业务的用户数、使用量、流量虽然大幅增长,但是收入增长却较为
3、缓慢,为了保证公司收入增长,一方面是要进一步加大营销力度,刺激用户更多的使用业务,另一方面也是要用好的业务来黏住用户,保证业务平稳较快增长。为了应对上述挑战,开展用户行为分析,以及在此基础上进行精准营销应用是尤为必要的,本课题进行了以下安排:在用户行为分析算法模型和精准营销平台的基础研究方面,由研究院用户行为实验负责1个子课题,同时由研究院负责整个项目的总体规划、方案和管理。在手机上网业务的应用方面,由浙江公司负责子课题“手机上网用户行为分析系统研发”,涉及到基于手机上网行为分析的互联网内容营销和数据业务交叉销售。在音乐业务的应用方面,由四川公司负责3个子课题。“音乐产品个性化推荐引擎研发”子
4、课题从个性化推荐与音乐产品相结合的层面开展,“基于互联网的无线音乐用户行为分析工具研究与系统实现”从中央音乐平台支撑的角度开展,“基于智能搜索引擎技术,面向无线音乐用户的个性化搜索结果模型及精准营销模型研究”则主要是为音乐个性化推荐提供服务的智能搜索引擎技术和音乐DNA技术等方面提供技术保障。在移动应用商场的应用方面,由广东公司公司负责子课题“基于应用商品的智能推荐【MM猜你喜欢】研究”。在手机阅读业务的应用方面,由浙江公司负责子课题“按照用户、终端、渠道、门户、内容、时间等多维度组合的灵活营销平台研发”。在集团和家庭业务方面,由河南公司负责子课题“基于网络数据为基础的家庭-集团用户挖掘”。在
5、客户服务渠道方面,由广东公司和北京公司分别负责1个子课题。广东公司子课题“精准服务营销平台研发”侧重于从客户服务信息中挖掘用户行为偏好,实现触点营销。而北京公司子课题“统一门户网营精准营销推荐研究”则从电子渠道的角度,研究如何为用户提供精准的主动营销服务。3.2开展用户行为分析模型研究,研发精准营销推荐平台,支撑营销应用研究院已经积累了二十多个用户行为分析的核心算法模型,取得10余项相关专利,需要将这些成果在实际运营中应用落地。研究院2010年研发了精准营销推荐平台原型,经过在现网产品中验证,效果良好。精准营销推荐平台的优化开发:针对实际运营中对Web网页、文本等非结构化信息处理的要求,通过优
6、化开发,在平台中实现Web挖掘和文本挖掘等功能模块。研究院的用户行为分析算法模型和精准营销推荐平台具有完全自主知识产权,整理上处于国内先进水平,对于掌握核心技术,提升公司的核心竞争力有重要意义。通过统一研发用户行为分析模型和平台,减少各省重复建设投资,节约公司成本支出。实现用户数据集中管理和运营,减少第三方接触运营数据的环节,保护用户隐私,保证公司战略安全。3.3 手机上网用户行为分析:高流量增长未带来收入的同步增长上网流量同比上升112.3%,但流量收入上升仅49.4%。一方面需要进一步激发上网流量,另一方面需要将流量向自有数据业务引导。这些又需要以用户上网数据为基础,通过用户行为分析手段了
7、解用户偏好。另一方面,我们对用户的理解也不够深刻,营销决策没有依据。如何选择合适的产品、合适的内容,在合适的时机,为合适的用户提供服务,这是在移动互联网时代要解决的最重要的问题,这就要求我们要深刻理解用户行为及其背后的信息。因此,只有开展手机上网用户行为研究,深入了解用户需求,才能提供精准服务。3.4 音乐用户行为分析和个性化服务:竞争压力加大,精细化运营能力需要加强不了解用户的真实需求,用户粘性不高;音乐内容为主要为编辑发布,缺乏权威性,业务转化率不高;每个用户看到同样的内容,缺乏个性化。产品之间分散,未建立不同门户产品用户行为的统一视图。3.5 MM应用商品智能推荐:理解用户,个性服务,提
8、高粘性,增强运营能力nMM应用商场是中国移动的重要战略型业务。但目前存在以下问题:不理解用户的偏好;业务转化率不高;营销手段还是靠传统的方式,成本高,效率低。因此,本子项目的意义在于:(1) 建立个体客户与应用偏好的对应关系,把握用户内容偏好,加深对用户需求的理解和认知。n(2) 基于客户偏好打造特色智能推荐模块,对用户进行个性化推荐,避免同质化竞争。n(3) 通过个性化推荐满足用户多样化需求和偏好,提高客户粘性,提升用户下载转化率。n(4) 创新移动互联网营销手段,探索客户运营新模式,提升MM客户运营能力。3.6 手机阅读的灵活营销平台:快速响应营销需求目前,手机阅读业务现状是:(1) 手机
9、阅读业务飞速发展,用户规模不断扩大,系统越来越庞大复杂,开发速度越来越慢。而随着业务的发展和竞争的日趋激烈,越来越需要平台提供更快的响应。于是产生了这样的矛盾:需求越来越迫切地需要及时地响应把握市场先机,而系统越来越复杂,开发速度只降不升。由于营销需求往往具有时效性,因此最受影响。(2) 手机阅读的业务发展需要手机阅读软件平台提供更好和更灵活的支撑能力,而现有的开发模式不能很好地支持业务的发展需要。当前情况下的最佳解决方案就是使平台对某一类需求的实现机制由固定的硬编码方式转变为灵活的可配置方式。(3) 手机阅读平台有10多万册图书,如何通过智能推荐技术为用户选择其感兴趣的图书,提升用户感知。因
10、此,建立灵活营销平台的意义在于:(1) 通过多维度组合适配,WAP门户的页面、组成页面的标签、呈现给用户的内容和各种产品可以按照以下六个维度进行适配,包括:时间、地域、终端(组)、用户组、渠道和WAP版本。(2) 通过这种多维度组合,可以覆盖到营销部门提出的所有可预见性的需求(约占该类总体需求的70%),这样原本需要投入大量资源和时间进行开发的工作现在只要通过配置就可以完成,同时免去了大量的线下交流和沟通,最重要的是不再需要等待几个月才能看到需求实现。(3) 实现电子图书的个性化推荐,对于提升用户粘性和用户感知,增加业务收入,有重要意义。3.7 集团客户和家庭客户识别:奠定集团业务和家庭产品营
11、销的基础集团市场和家庭市场是企业发展的两大重要市场,市场发展的基础是客户的圈定和识别,因此如何利用现有企业的各类数据通过模型来识别家庭和集团成员将会为家庭集团市场管理和拓展提供指导和支撑。现有家庭集团市场的拓展主要依靠一线支撑人员的调查和搜集,具有不明确性和不可衡量性的特点。通过建立家庭和集团客户挖掘就能支撑一线人员识别潜在家庭集团客户,针对性的进行圈定;同时能够对于现有家庭集团客户的真实性、有效性进行检验,这也将是家庭市场和集团市场发展的基础。在网络部门的大力支持下,我省率先接入了全省A接口网络信令数据,能够更加深入的理解和把握客户,在融入网络数据的基础上,就能够更加精准的进行家庭集团客户识
12、别。3.8 捕捉客服信息中的营销机会:分析客户行为,了解客户需求,实现触点营销在电信重组,全业务竞争的新形势下,市场竞争日趋激烈。各大运营商充分发挥各自优势,利用全业务运营的契机争夺客户。营销资源日益紧张,必须利用日益紧张的营销资源,更好的、更快的,更低成本的满足客户个性化、差异化的需求。同时,客服接触信息未得到充分应用,中国移动客户每月接触数十亿次,涵盖了大量客户信息,但由于分散在不同的系统,缺乏深入的数据挖掘,接触信息未得到充分应用。最后,当前被动营销模式制约了客户满意度电子渠道优势发挥。因此,通过构建和不断提升电子渠道的精准营销能力,可以为客户提供便捷的一对一个性化服务体验,有效提升营销
13、服务感知,同时降低营销成本,分流传统营业厅的营销服务压力。其次,通过深入研究客户行为、客户需求和客户偏好,逐步形成“客户全息特征库”,提升客户价值。提高改变以往“粗放式”方式,为客户提供个性化服务和营销,提升客户感知,提高营销成功率,提高营销价值。最后,通过促进服务营销的战略转型,为企业提供新的利润增长方式。四、课题研究目标项目的总体目标子项目 解决方案 用户行为分析模型与精准营销推荐平台 在中国移动自有平台上实现推荐服务的整合应用,促进手机上网、音乐、MM、阅读等产品的销售。通过优化开发和省公司应用性能和效果评估反馈,实现高性能、高可用的基于云计算的精准营销推荐平台。手机上网用户行为分析应用
14、 结合研究院的用户行为分析模型,建立一套完善的手机上网用户行为分析系统, 通过对用户手机上网访问行为进行分析,获取用户的访问轨迹、浏览页面内容、网站信息、浏览客户端信息、移动终端信息等,进行各类分析,形成各类用户模型。研究一种适应分类体系变化的海量网页快速分类系统。引导用户使用移动自有业务,开展个性化内容营销,提升用户粘性。音乐产品个性化推荐及精准营销应用基于研究院用户行为分析模型和精准营销推荐平台,实现音乐产品的个性化推荐引擎,为音乐Web、WAP、客户端产品提供精准营销服务,研究提升推荐效果的策略,开展营销效果评估。MM应用商品智能推荐应用 对MM存量用户和其所接触过(浏览、搜索、下载等)
15、的商品进行关联分析,一方面分析商品间的内在关联关系,另一方面分析MM用户的应用偏好,以实行精准的个性化推荐模式,实现快速、准确地传递信息,提高MM用户的个人使用体验感受和个人贡献的价值。 手机阅读的灵活营销平台和精准营销应用建立多维度灵活营销平台,研究适合营销部门需求的适配规则,将现有多个门户由独立配置规则改为由管理平台进行统一配置规则,解决目前平台开发和营销需求之间难以适应的问题,实现有效抓取客户并降低用户流失率和提升平台开发建设的投入产出比的目的。基于研究院精准营销推荐平台,实现精准营销推荐在手机阅读产品中的展现,为用户提供准实时的个性化图书推荐服务。集团和家庭用户挖掘 通过对不同时间段的
16、个人行为数据的追踪,结合两个人之间的通信交往信息,使用社会网络分析相关分析方法,构建社会关系模型,准确地判别各类交往关系,如家庭、同事等。基于客服信息挖掘的触点营销 针对挖掘出来的客户行为,创新服务、营销模式,优化流程和规范。基于用户行为结果开展“一对一”的精准营销,实现在适当的时机,将适当的产品,通过适当的渠道,推荐给适当的客户,提高营销成功率。统一门户网营精准营销推荐应用 充分利用研究院的精准营销推荐技术和平台,在北京移动网站网营渠道开展重点业务的精准营销推荐服务。研究提升推荐效果的策略,开展营销效果评估。五、课题研究内容5.1 用户行为分析模型研究和精准营销推荐平台5.2 手机上网用户行
17、为分析应用手机上网用户行为分析应用的主要内容包括:多数据海量数据预处理;海量数据存储和计算;“客户-内容”特征类标签分层可扩充体系;“客户-内容-业务”三维匹配矩阵;前台应用管理模块。系统架构如下图所示:5.3 音乐产品个性化推荐引擎及精准营销应用本项目针对数字(无线)音乐市场现状以及移动集团的无线音乐业务各类产品的运营及营销模式模式进行深入研究。研究内容及框架如下: 1、用户行为数据库(UDB)的研制,包括(1)研制统一的各产品线用户基本信息库(2)在产品内进行插码、记录用户行为数据的研究(3)进行映射用户订购关系到用户行为数据库方法的研究。 2、产品数据库(PDB)的研制,包括:(1) 研
18、制音乐产品标签库(2) 研制并扩展用户标签库(3) 进行扩展产品数据库维度的研究。3、个性化推荐引擎的研制,包括(1)研究基于用户数据的产品推荐方法。(2)研究基于产品数据的产品推荐方法(3)研究基于关系与聚合的产品推荐方法(4) 研究各种推荐方法相应的精准营销模式。 本项目的研制关键点:1、数据库建模,越完善的数据库推荐效果越好。2、个性化推荐引擎的算法,关系到推荐的精准度,交互的效果等。3、本引擎在具体产品中的落地应用方式也是需重点研究的问题。5.4 MM应用商品的智能推荐应用研究内容包括:基于MM存量用户到商品的行为(浏览、搜索、下载等)的个性化推荐 基于用户当前正在使用的应用的推荐 基
19、于用户历史下载应用行为的推荐 基于用户历史浏览、搜索应用行为的推荐 基于用户当前应用的推荐 浏览、搜索过本应用的用户还浏览、搜索过的应用 浏览、搜索过本应用的用户最终下载的应用 下载过本应用的用户之前还下载的应用 经常与本应用一起下载的应用应用“MM猜你喜欢”业务流程设计研究框架如下图所示:5.5 手机阅读灵活营销平台和智能推荐应用在管理平台侧提供可灵活配置的管理界面进行规则的建立,同时使WAP和客户端门户根据关联的规则进行相应的展现。具体如下: WAP门户标签可根据时间, 地域, 终端, 用户组, 渠道, WAP版本等维度来判断怎样显示。 WAP门户页面可根据分省和终端来判断跳转到哪个页面。
20、 客户端门户页面可根据分省和软件版本来判断跳转到哪个页面。 建立一套自动化的电子书智能推荐体系。5.6 集团和家庭客户识别与精准营销应用本项目通过对不同时间段的个人行为数据的追踪,结合两个人之间的通信交往信息,使用社会网络分析相关分析方法,构建社会关系模型,准确地判别各类交往关系,如家庭、同事等。 数据标准化处理校验 基于位置的社会网络关系识别模型 社会网络关系识别可视化 目标客户营销应用研究技术框架如下:课题研究难点和关键解决方案包括:1. 基于手机移动行为的用户居住地和工作地(OD稳定点)识别:移动行为较为随机,存在时间、空间上的不均衡,且基站覆盖范围存在重叠。解决方案:分析基站数据得到用
21、户移动轨迹的时间和空间规律,采用基站合并策略和基站频繁度进行优化。2. 多元数据校验:分析数据来源包括移动用户个人信息、交往圈数据和移动用户行为轨迹,数据规模大,存在冗余数据和非有效数据,需要清洗和去噪处理。解决方案:采用数据标准化处理机制,考虑实体完整性、核心记录元素是否非空以及通信量与轨迹数据完整性。3. 社会关系识别精度提升:缺少对家庭、集团、朋友等关系定义,且需要综合考虑精度、效率及与后续分类模型配合程度来选择合适的特征提取方法,尤其在识别精准度、识别效率方面具有一定的提升空间。解决方案:基于特征建立不同关系分类训练器,计算不同关系和社群聚类,作为社会关系网络基础,并引入交往圈重合以及
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用户行为分析与精准营销研究 开题 报告 用户 行为 分析 精准 营销 研究
链接地址:https://www.31ppt.com/p-3708890.html