固体火箭推进剂ppt课件.ppt
《固体火箭推进剂ppt课件.ppt》由会员分享,可在线阅读,更多相关《固体火箭推进剂ppt课件.ppt(288页珍藏版)》请在三一办公上搜索。
1、2005年11月25日,固体推进剂,固体推进剂,专业:飞行器动力工程学时:48学时主讲人:王革 教授单位:哈尔滨工程大学航天工程系,一、基本知识,固体推进剂的基本概念固体推进剂的发展与火箭技术固体推进剂的要求固体推进剂的分类双基推进剂的组分复合固体推进剂的组分无烟、少烟固体推进剂,固体火箭发动机的组成及工作过程,固体火箭发动机主要是由固体推进剂、燃烧室、喷管和点火装置四部分组成的。固体发动机的整个工作过程则由固体推进剂装药的点火过程、燃烧过程及燃气在喷管内的流动过程构成。固体推进剂在燃烧室内燃烧,由化学能转换为热能生成高温高压燃气,燃气通过喷管膨胀加速,将热能转换成动能高速向后喷出的燃气给发动
2、机一个反作用力,即推力,它是火箭导弹推进的动力。固体推进剂是发动机工作的能源和工质源。,为了完成某飞行任务,发动机设计者必须根据总体部门提出的要求,如总冲量、发动机工作时间、尺寸限度、重量限度、贮存期限、贮存条件、运输条件、使用条件等,选择一种能量性能与燃烧速度范围能符合要求的固体推进剂及其装药的药型,然后根据使用条件和受载情况对所设计的装药进行结构完整性分析,以鉴定推进剂力学性能是否符合要求。设计的最后阶段通常要对所选固体推进剂的燃烧性能和力学性能作小量调整,或对发动机计作某些修改,以设计出满足要求、性能良好的同体火箭发动机。固体发动机研制阶段,发动机试车过程中常会出现不正常的内弹道曲线,甚
3、至出现爆炸事故。这些现象的原因分析常常涉及到固体推进剂力学性能、燃烧性能及装药质量等方面的问题。无论火箭总体设计人员还是固体火箭发动机设计工作者必须对固体推进剂的性能,主要是能量、燃烧、力学及贮存等性能有所了解。,固体推进剂的重要性,固体推进剂的基本概念,火药:古代四大发明之一。火药过去泛指火炸药,现代火药不包括炸药。火药根据用途分:发射药(用于身管武器,枪炮)和推进剂(用于喷气推进,如火箭、导弹推进)定义:在适当的外界能量作用下,自身能进行迅速而有规律的燃烧,同时生成大量高温气体的物质。武器对火药的要求:1)自身含可燃元素和氧化元素,不需外界供氧;2)可迅速点燃;3)规律燃烧,放出大量的热和
4、生成大量的气体;4)性能稳定,固体推进剂可定义为本身含有氧化剂和燃烧剂、能够通过有规律地燃烧释放出大量炽热气体、完成发射功的固态致密材料。通常固体推进剂所进行的是快速的燃烧反应。但是,当激发反应的方式或反应进行的环境条件不同,固体推进剂还可以发生缓慢的分解反应和激烈的爆轰反应。缓慢的分解反应在固体推进剂的加工、贮存和使用过程中都存在着,其速度取决于环境温度、湿度及杂质等。常温下分解反应速度慢,短期内难以觉察。升高温度可使反应速度加快。用硬金属撞击固体推进剂,在足够的撞击能作用下,或者用猛炸药引爆等条件下,固体推进剂也会发生爆轰。,固体推进剂的基本概念,燃烧和爆轰的主要区别在于:(1)能量传播的
5、方式不同:燃烧时反应区的能量是通过热传导和辐射的方式传人相邻未反应区而引起下一层反应的。爆轰的传播是以冲击波的强烈的高温、高压作用而进行的。(2)传播速度不同:燃烧传播速度通常约为每秒几毫米到几百毫米,爆轰反应传播速度一般高达每秒数千米(3)传播速度受外界条件的影响不同:固体推进剂的燃烧速度与外界条件(温度、压强)有密切关系,如在大气中燃烧,燃速很慢;而在密闭容器中高压条件下燃烧时,燃速急剧地增大。爆轰过程由于其传播速度极快,几乎不受外界条件的影响对一定的爆炸物质,在固定的装药密度下爆轰速度是一个常数。,固体推进剂的基本概念,(4)反应产物的运动方向不同:燃烧过程中反应区内燃烧产物运动方向与燃
6、烧波阵面的传播方向相反,因而燃烧波阵面内的压强较低。温轰时,反应区内爆轰产物运动方向与爆轰波的传播方向相同爆轰波阵面内的压强可高达数十万个大气压 固体推进剂的三种化学变化形式在性质上虽然不同,但它们之间有着密切的联系固体推进剂缓慢的分解反应在一定条件下可以转变为燃烧;燃烧在一定条件下又可以转变为爆轰。这种相互区别又相互转化的关系具有十分重要的意义。,固体推进剂的基本概念,最早的固体推进剂是我国古代四大发明之一的黑火药。黑火药的配方:它是用15的木炭作为燃烧剂,75硝酸钾作氧化剂。10的硫磺既是燃烧别又将粘结木炭和硝酸钾的作用。黑火药能量低,强度差,不能制成较大的药柱。1888年瑞典科学家诺贝尔
7、以硝化甘油增塑硝化纤维素制得了双基火药,主要用于枪炮武器。1935年苏联的科学家用添加燃烧稳定剂和催化剂的方法降低了双基火药完全燃烧的临界压强,首先将双基推进剂用作火箭发动机的装药这种火箭弹在第二次世界大战中发挥了威力。但是双基推进剂笛要用棉纤维(或木纤维)和动物脂肪作为原料。,固体推进剂的发展,固体推进剂的发展,1942年美国开始了复合固体推进剂的研究。最初的复合固体推进剂是用高氯酸铵为氧化剂,沥青作燃烧剂并起粘合氧化剂的粘合剂作用。虽然这种推进剂能量低,力学性能差,没有多少实用价值。但它为发展固体推进剂开辟了新的途径。因为这类推进剂装药用浇注方法制造,加大装药尺寸不受限制1947年美国制成
8、了聚硫橡胶复合固体推进剂,成为第一代的现代复合固体推进剂,以后又发展了聚氨脂,接着又相继出现了改性双基推进剂,聚丁二烯炳烯酸推进剂、聚丁二烯丙烯酸一丙烯睛推进剂以及端羧基聚丁二烯推进剂60年代后期研制成了端羥基聚丁二烯推进剂。80年代,NEPE推进剂(硝酸酯增塑的聚醚推进剂),比冲可达2675m/s,火箭最大速度比冲,m/s或NS/kg起飞时总质量推进剂燃尽后火箭质量推进剂质量技术对固体推进剂的要求,能量特性的要求:(1)比冲高:比冲是固体推进剂能量的量度。根据齐奥尔科夫斯基公式,火箭发动机中推进剂燃完时火箭速度达到最大值。火箭的最大速度与比冲成正比,对射程的影响大。,(2)密度大:虽然密度是
9、固体推进剂的物理量,但对于体积一定的发动机,推进剂的密反愈大,能装填的固体推进剂装药量Mp越大,从齐奥尔科夫斯基公式可知,Vm也有提高,起着与提高能量等同的效果。,火箭技术对固体推进剂的要求,火箭技术对固体推进剂的要求,燃烧性能:固体推进剂装药在发动机内的燃烧必须是有规律的,即燃烧稳定、重现性好。燃烧规律最好不受或少受环境条件(装药初温、燃烧室压强、平行于燃面的气流速度)的影响,以满足发动机内弹道性能不变,保证火箭射击精度的要求。力学性能:要求固体推进剂装药,特别是大型药柱应有足够的抗拉强度和延伸率,在使用温度范围内不软化、不发脆,不产生裂缝。贴壁浇注的装药不与发动机绝热层脱粘。物理、化学安定
10、性:要求固体推进剂有长的使用寿命安全性能:在贮存、运输、装配过程中不发生燃烧和爆炸事故。在受到机械冲击力时应有足够的稳定性。还应有高的自燃温度,以防意外着火事故。经济性能:火箭技术的发展,注意力主要放在新技术应用上,飞行器的高性能是设j计的准则,较少考虑经济性能。现在和未来经济性能是重要条件之一。经济性能将成为一项重要指标。燃烧产物无烟或少烟:易被敌人发现发射基地;某些用激光或红外光等制导的导弹,烟雾会使光波衰减。良好的工艺性能和重现性:,固体推进剂的分类(Solid Propellant Classifications),根据构成固体推近剂的各组分之间有无相的界面,固体推进剂可分成均质推进剂
11、和复合推进剂两大类。,双基推进剂的组分-硝化纤维素NC,双基推进剂是一种均质推进剂,它的主要组分硝化甘油和硝化纤维素(硝化棉)的分子中既有可燃元素c和H,又含氧化元素等,其硝化纤维素能在硝化甘油中形成胶体体溶液,各组分无相界面,故结构均匀。硝化纤维素(NC):一般化学式可写为,它是棉纤维或木纤维大分子与硝酸反应的生成物,双基推进剂的组分-硝化纤维素NC,y为大分子的基本链节数目,即称聚合度。x为被-(ONO2)取代的-(OH)数。对于一个链节,x为小于或等于3的整数,但因反应过程不均匀,每个链节的x不尽相同,其平均值不一定是整数。纤维素被酯化的程度习惯上用含氮量N表示,它代表了硝化纤维素中氮元
12、素的重量百分含量。控制反应条件可以得到含氮量不同的硝化纤维度,含氮量由实验测定。,双基推进剂的组分-硝化纤维素NC,从以上反应式可以看出,含氮量愈高,完全燃烧产物C02,N2增加,放出热量就多。还可以看到,硝化纤维素是缺氧的化合物,故燃烧生成物中有未完全燃烧产物CO和H2存在。思考:燃烧生成物中有未完全燃烧产物CO和H2存在是好还是坏?,由一般化学式计算出假定化学式,假定化学式定义为1kg组分(或推进剂)所含各化学元素的摩尔原子数。硝化纤维素假定化学式的计算步骤如下:,双基推进剂的组分-硝化纤维素NC,双基推进剂的组分-硝化纤维素NC,双基推进剂的组分-硝化纤维素NC,硝化纤维素(NC):在双
13、基推进剂中起着主要能源和保证机械强度的作用。因为硝化纤维素易燃,能提供推进剂燃烧时所需的可燃元素和部分氧化元素,产生大量气体并放出大量热量。因为硝化纤维素被溶剂硝化甘油塑化后,其分子成为推进剂的基体或骨架,赋予药柱以一定的物理机械性能。国产的双基推进剂中,硝化纤维素的含量在118一121。适当增加硝化纤维素的含量可以提高双基推进剂的抗拉强度和弹性模量。,双基推进剂的组分-硝化甘油(NG)和硝化二乙二醇(DEGDN),硝化甘油(NG)和硝化二乙二醇(DEGDN)硝化甘油是甘油与硝酸作用的产物,其反应式为,硝化甘油是无色或淡黄色油状液体,密度为1591kgm3,微溶于水。50度时溶解度为0.259
14、100mm3,能与一些有机溶剂互溶。硝化甘油能很好地溶解弱棉。当温度大于某临界温度时,硝化纤维素和硝化甘油可以任意比例互溶;如温度低于临界温度,只有在两者比例合适时才可以得到所希望的固态溶液(即硝化甘油溶于硝化纤维素的一相),否则会出现两相,一相是硝化甘油溶于硝化纤维素中,另一相是硝化纤维素溶于硝化甘油中;在更低的温度下则会成为互不溶体。硝化甘油析出的现象称为“汗析”。实践证明,采用质量含量为25一30的硝化甘油所制得的双基推进剂在较宽的使用温皮范围不会出现“汗析”,双基推进剂的组分-硝化甘油(NG)和硝化二乙二醇(DEGDN),硝化甘油是一种高威力的液体炸药,爆炸反应式为,分子中的氧量不仅足
15、以使其本身的碳和氢完全燃烧,还有自由氧放出。硝化甘油有毒。在双基推进剂中是硝化纤维素的主要溶剂和主要能源。前一作用是因为硝化甘油与硝化纤维素可形成固态溶液。硝化甘油充填于硝化纤维素大分子间,削弱了大分子间的作用力,增加了硝化纤维素的柔顺性和可塑性。便于加工成型并使推进剂有一定的力学性能;后一作用是由于硝化甘油燃烧时生成大量气体,并放出大量的热量。生成的气体中含有一部分自由氧,这部分自由氧可供给缺氧的硝化纤维素使之燃烧完全程度提高,因此也把硝化甘油叫做有机氧化剂。双基推进剂中硝化甘油的含量一般在25-30之间现有的双基推进剂都是负氧平衡的。硝化甘油的含量过多时,不仅加工危险性增加,且会造成“汗析
16、”。,双基推进剂的组分-硝化甘油(NG)和硝化二乙二醇(DEGDN),硝化二乙二醇(DEGDN)的分子式为,爆炸反应式是,可见它是缺氧的爆炸物。硝化二乙二醇对硝化纤维素的胶化能力高于硝化甘油,因此也可以作双基推进剂的主溶剂,用来部分或全部取代硝化甘油。因为它是贫氧的化合物,能量低于硝化甘油。故用它制成的双基推进剂爆热和燃烧温度都较硝化甘油制成的双基推进剂低,但气体生成量较大,适合在燃气发生器中使用。,双基推进剂的组分-其他组分,助溶剂 主要作用是增加硝化纤维素在主溶剂中的溶解度,常用的助溶剂有二硝基甲苯、硝化二乙醇胺(吉纳)等,助溶剂能与硝化甘油互溶,从而增加了硝化甘油与硝化纤维素的溶解性能,
17、防止硝化甘油“汗析”、提高生产过程的安全性。增塑剂 双基推进剂在低温力学性能较差,在冲击力作用下易脆性破裂,产生裂缝。增塑剂的作用是削弱硝化纤维素大分子之间的作用力,增加其塑性,因此用它降低双基推进剂低温下脆性。就义对硝化纤维素的作用来说实际上届于助溶剂类,但对能量无贡献,故不能多用,一般限制在3下。常用的增塑剂为邻苯二甲酸丁酯。化学安定剂 可减缓和抑制硝化纤细系及硝化甘油的分解使双基推进剂能长期贮存而保持其化学性质不变。燃烧催化剂和燃烧稳定剂 燃烧催化剂有增速和降速两类。增速常用的有铅、铁、铜、钴、镍、锰等金属氧化物,铅和铜的有机酸盐和无机酸盐、碳黑;减速的常用的是樟脑、多聚甲醛、草酸盐、磷
18、酸盐和氧化镍。燃烧稳定剂主要用来消除双基推进剂的不正常燃烧,增加其低压燃烧稳定性。常用的燃烧稳定剂右氧化镁、氧化钴、碳酸钙、苯二甲酸铅、石墨等。工艺附加物,Double Base Propellants Homogeneous mixture of two explosives-usually nitroglycerine(NG)dissolved in nitrocellulose(NC),sometimes with additives.Advantages are:Smokeless;low cost;low n value(about 0.3)and can be easily pla
19、tonised for good burning stability.Disadvantages are:Lower density than composites so low specific impulse;hazardous to manufacture;grain requires structural support.,Solid Propellant Classifications,Composite Propellants Heterogeneous mixture of powdered metal,crystalline oxidiser and polymer binde
20、r.Most common type used.Advantages are:Higher density toxic exhaust gases.,Solid Propellant Classifications,Solid Propellant Properties,复合固体推进剂的组分-氧化剂,复合固体推进剂以高聚物粘合剂为弹性基体,并提供燃烧所需的可燃元素。在粘合剂中填加有固体的氧化剂和金属粉,此外还有少量的其它成分。氧化剂氧化剂的主要作用有:(1)提供推进剂燃烧所需要的氧,并生成气体以保证能量。(2)作为粘合剂基体的充填物以提高推进剂的弹性模量和机械强度(3)控制氧化剂粒度大小、调节
21、推进剂的燃速。(4)增大推进剂的密度。氧化剂应满足的要求 有效氧含量高:有效氧指的是氧化剂分子中全部可燃元素与氧化元素(o,c1,F)化合,其化合价得到满足后所剩余的氧。有效氧含量则是氧化剂分子中有效氧的质量(以原子量表示)与氧化剂分子量之比,复合固体推进剂的组分-氧化剂,生成焓高:,复合固体推进剂的组分-氧化剂,密度大:氧化剂的密度愈大,制成的固体推进剂密度也越大,这不仅可以减小燃烧室的容积(对装填同样装药重量),而且当推进剂中氧化剂含量不变时,选择大密度的氧化剂可降低它和粘合剂的体积比,这有利于浇注工艺及安全生产。气体生成量大:气体生成量一般用1kg氧化剂分解产生的气体在标准状态下所占有的
22、体积来表示。为满足这一要求、氧化剂应由原子量低的元素组成。,复合固体推进剂的组分-氧化剂,高氯酸铵(AP)是目前广泛采用的氧化剂。与其它组分相容性好、气体生成量较大、生成焓大、吸湿性较小、成本低、各项性能都较好的优点。但燃烧产物HCl分子量大,与水形成酸,腐蚀性大。硝酸铵(AN)吸湿性大,生成焓低,产气量小,燃速低。高氯酸钾(KP)有较高的有效氧含量,密度大,但燃烧生成的KCl为固体微粒,因此气体生成量少。它的标准生成焓也较小。高氯酸锂可获得很高的比冲、最高可达2646m/s,但吸湿性大,燃烧稳定性差,压力指数高。黑索金(RDX)和奥克托金(HMX)作为氧化剂,气体生成量大、无烟、不吸湿,虽氧
23、平衡是负值,但生成焓高。热安定性和贮存性良好,相容性好,产热量大,是理想的氧化剂。与双基粘合剂可制成改性双基推进剂。,复合固体推进剂的组分-粘结剂,粘合剂:复合固体推进剂以粘合剂为连续相,以固体填料(固体组分,如氧化剂、铝粉等)为分散系的多相体系,所以推进剂的力学性能贮要取决于粘合剂。固体推进剂的发展是建立在粘合剂发展的基础上的,现在的复合推进剂都以粘合剂的种类命名。对于粘合剂的要求:能量高,黏度低,固化后玻璃化温度低,储存性能好粘合剂分热塑性和热固性两大类:热塑性粘合剂系统常温变硬温度升高到一定程度又会软化呈塑性,故称热塑性。属于这类的粘合剂有硝化纤维素塑溶胶粘台剂,聚氯乙烯塑溶胶粘合剂。热
24、固性粘合剂:它是由粘合剂(液态预聚物)同交联剂、固化剂进行聚合反应而制成。粘合剂、固化剂、交联剂共称为粘合剂系统。热固性粘合剂系统固化后再升温不能使其变软。这类粘合剂的力学性能好。绝大多数的复合固体推进剂的粘合剂都属热固性的。,复合固体推进剂的组分-粘结剂,复合固体推进剂的组分-粘结剂,1聚硫橡胶粘合剂(PS)我国使用的是乙基缩甲醛聚硫化合物和丁基醚聚硫化合物。这类粘合剂有良好的力学性能和粘结性。50年代聚硫推进剂曾广泛地用于固体火箭发动机。但是聚硫橡胶粘合剂存在明显的缺点:有金属粉存在时,固化反应放出氧气,使推进剂内部形成气泡,因而不适于加入金属粉,并且含有原子量较大的硫元素使气体生成量不够
25、大。所以聚硫推进剂的能量难以提高,不能满足火箭技术发展的需要。现在聚硫橡胶已逐渐被其它性能更好的粘合剂所代。,2聚醚粘合剂 我国常用的是聚醚丙三醇,它的主要优点是来源比较丰富,粘度低因而可以加入较多的固体填料,制成的推进剂能量高。固化速率合适,固化温度较低,因此工艺性好,固化后热应力小,力学性能也很好,3丁二烯丙烯酸丙烯脂三聚物(PBAN)粘合剂 这种粘合剂的玻璃化温度低,因此能在更低的温度下使用。它的价格是现在复合推进中最低的。它的缺点是粘度较大,影响了固体组分的含量。力学性能的重现性还不够满意。4端羧基聚丁二烯粘合剂(简称丁羧胶,英文名称缩写CTPB)它是在PBAN基础上发展的,克服了PB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 火箭 推进 ppt 课件

链接地址:https://www.31ppt.com/p-3678472.html