第8章动力学普遍定理课件.ppt
《第8章动力学普遍定理课件.ppt》由会员分享,可在线阅读,更多相关《第8章动力学普遍定理课件.ppt(85页珍藏版)》请在三一办公上搜索。
1、1,质点运动微分方程是解决质点动力学问题的普遍方法,但用它解决质点系动力学问题则很麻烦,因为 要解3n个联立的二阶微分方程。在很多问题中,并不需要了解每一个质点的运 动,只需要知道代表整个质点系运 动的某些特征量,因而需要讨论动力学普遍定理(包括动量定理、动量矩定理、动能定理及由此推导出来的其它一些定理)。他的优点是:不仅能解质点的动力学问题,也能解质点系的动力学问题;他的物理意义鲜明,形式简单。各定理从不同侧面建立了运动特征量(动量、动量矩、动能等)与机械作用量(冲量、力 矩、功等)之间的关系,从总体上揭示了质点系机械运动的一般规律。,2,81 动量定理82 质心运动定理83 动量矩和转动惯
2、量84 动量矩定理85 刚体平面运动微分方程86 动能定理87 机械能守恒定律88 动力学普遍定理的综合应用,第八章 动力学普遍定理,3,1.质点的动量:质点的质量与速度的乘积:,动量是度量物体机械运动强弱程度的一个物理量。,运动强,则要改变其运动就困难;运动弱,则要改变其运动就容易。如枪弹:虽质量小但速度很大,轮船:虽速度小但质量很大。故其动量很大。轮船靠码头时会对码头产生很大的冲击力。,矢量,瞬时量,方向与 相同。单位:kgm/s。,一、动量,8-1动量定理,4,2.质点系的动量:,即质点系的动量等于质点系的质量与其质心速度的乘积。,动量沿直角坐标轴的分解式:,即质点系的动量等于质点系中所
3、有各质点的动量的矢量和。,由质心公式(后述)可得:,5,2力是变矢量:(包括大小和方向的变化),1力是常矢量:,二冲量,其中 称为力 在dt时间内的元冲量。,力与其作用时间的乘积称为力的冲量。冲量是力在一段时间内对物体作用的累积效应的量度,是一种机械作用量。例如,用力推动两辆相同的车子,作用时间长的速度大,作用时间短的速度小。,6,3合力的冲量:,矢量,累积量。,即在任一段时间内,合力的冲量等于各分力冲量的矢量和。,投影:,7,三动量定理,1质点的动量定理,即:质点的动量对时间的导数等于作用于质点的力。,即:在某一时间间隔内,质点动量的改变量等于作用在质点上的力在同一段时间内的冲量。,微分形式
4、:由牛顿第二定律:,积分形式:,由微分形式:,在t1 t2积分:,8,投影式:,2质点系的动量定理,对y、z轴同样有。,微分形式:,质点的动量守恒,若,则常量,质点作惯性运动,对固定轴:,若 X=0,则mvx=常量,或mv2x=mv1x,质点沿 x 轴的运动作惯性运动。,研究质点系内任一质点 Mi:质量mi,速度vi,其受外力合力,内力合力,由质点动量定理的微分形式:,9,对整个质点系,有:,内力,外力,即:质点系动量对时间的导数等于作用在质点系上所有外力的矢量和(外力系的主矢)。,于是:,10,在t1 t2时间内积分:,即:在某一时间间隔内,质点系动量的改变量等于作用在质点系上的所有外力在同
5、一时间间隔内的冲量的矢量和。,积分形式:,由微分形式有:,向固定轴投影:,对y、z轴同样有。,11,内力不能改变整个质点系的动量,只有外力才能改变质点系的动量。例如:力大无穷的大力士不能举起自己,在车箱内无论用多大的力推车箱,车箱的运动都不会改变。内力可以改变质点系中质点的动量。例如炮弹爆炸后弹片的运动。,由定理知:,向固定轴投影:,对y、z轴同样有。,12,在自然界中,大到天体,小到分子、原子等基本微粒间的相互作用,都遵守动量守恒定理,它是自然界中最重要最普遍的客观规律之一。例如:枪、炮的“后坐”,火箭、喷气飞机的反推,螺旋桨的反推等。,质点系的动量守恒若则常矢量。若则常量。,13,例1 已
6、知一弯管,管内流量Q(m3/s)(常量),流体密度为(kg/m3),在两截面处的平均流速分别为 求流体流动时对弯管产生的总压力。设流体不可压缩,。,解:取截面A与B之间的流体为研究对象。,受力分析如图示。,应用动量定理建立方程,其他部分的流体对该段流体的压力 该段流体的自重 管壁的约束反力,14,代入动量定理方程,计算,在dt时间内,流体从AB位置运动到ab位置,则,即,静反力,(附加)动反力,(附加)动反力:,15,投影形式,与 相反的力就是管壁上受到的流体作用的附加动压力,16,例2 小车重G1=2kN,车上的箱中装砂,箱、砂共重G2=1kN;车与箱以3.5km/h的速度在光滑直线道路上前
7、进。现有一重G3=0.5k N的重物铅直落入箱中。求此后小车的速度;若设重物落入箱中后箱在小车上滑动0.2s才与车面相对静止,求车面与箱底间的平均摩擦力。,解:求重物落入后车的速度,以重物、车、箱、砂为研究对象,设重物落入后车、箱共同速度为v,则:,17,求箱底与车面间的摩擦力,以小车为研究对象:,小车在0.2s内速度由v0 v,由,注意:速度单位应用m/s,18,8-2质心运动定理,一.质点系的质量中心(简称质心),质点系的质心是表征质点系质量分布情况的一个重要概念。,设有n个质点组成的质点系,取固定点O,则由矢径,确定的点称为质点系的质心。,M=mi质点系的总质量,以O点为原点建立直角坐标
8、系,则质心坐标:,19,质点系运动时,xi、yi、zi是变量,因而xC、yC、zC一般也是变量;,在重力场中,质心与重心是重合的(将mi=Wi/g代入上式即得重心坐标公式),但质心的概念比重心更广泛,在非重力场,重心无意义,但质心存在。,由 有:,两边对时间t求导:,20,将 代入到质点系动量定理:,若质点系质量不变,则,或,上式称为质心运动定理(或质心运动微分方程)。即:质点系的质量与质心加速度的乘积,等于作用于质点系上所有外力的矢量和。,1.投影形式:,直角坐标轴:,自然轴:,二.质心运动定理,21,2.质心运动定理是动量定理的另一种表现形式。任何一个质点系质心的运动与一个质点的运动相同,
9、这质点的质量等于质点系的总质量,这质点的受的力等于质点系所受外力。,3.由定理知:,(1)质点系的内力不能改变质心的运动,只有外力才能改变质心的运动。如:汽车在绝对光滑的路面上,运动的汽车不能停止,静止的汽车不能运动;炮弹爆炸成若干碎片,到第一块弹片落地之前,其质心的运动仍作与爆炸前一样的抛物线运动;跳水运动员、体操运动员无论在空中如何滚翻、转体,其质心运动的轨迹总是一条确定的抛物线。,22,(2)内力虽不能改变质心的运动,但可以改变质点系中质点的运动。,(3)应用质心运动定理不需考虑内力,使问题简便。,4.质心运动定理解决的问题,(1)已知质点系质心的运动,求作用在质点系上的外力;,(2)已
10、知作用在质点系上的外力,求质点系质心的运动(运动方程、速度、加速度),意义:质点系的复杂运动可以看成是随质心的运动与相对质心的转动,应用质心运动定理求解质心的运动。,23,5.质心运动守恒定理,(1)若,则 常量即:如果作用在质点系上的外力的矢量和恒等于零,则质心作惯性运动。,(2)若Xie0,则acx=0,vcx=常量即:如果作用在质点系上的外力在某一轴上投影的代数和恒等于零,则质心速度在该轴上的投影保持不变(质心沿该轴作惯性运动),又若vcx=常量=0,则xc=常量,即质心在该轴的坐标保持不变。例如:人和船静止于水面上,若不计水的阻力,则人在船上走,船会向相反的方向运动。,24,解:(1)
11、研究对象:压实机(质点系),例3 图示压实机:机壳、机座共重P;始终处于对称位置的两偏心锤均重G,偏心距e,以匀相向转动。求压实机给地面的压力。,(2)受力图,(3)建立图示坐标系,并设h、H,则,x,y,h,H,(4)建立质心运动微分方程,25,压实机给地面的压力,讨论:,压力包括:,静反力P+2G,(附加)动反力,动反力为周期力,它引起振动。要消除振动,就要消除偏心。,此题也可用动量定理求解。,26,3.有些运动用动量矩比用动量更能反映其运动特征。如行星的运动,开普勒定理:mv1r1=mv2r2=常量,8-3动量矩和转动惯量,有了动量定理,为什么还要讨论动量矩定理?,1.刚体绕过质心的轴转
12、动时,可见动量不能表征或度量这种运动。,2.动量定理和质心运动定理讨论了外力系的主矢与质点系运动变化的关系,但未讨论外力系主矩对质点系运动变化的影响。,27,一动量矩(质点或质点系动量对某点或某轴的矩,是度量质点或质点系绕某点或某轴运动强弱的物理量),1质点的动量矩,仿照力矩的定义:,质点对点O的动量矩:,矢量,瞬时量,指向符合右手螺旋法则。,大小:hO=2OAM。单位:kg2/s=Nms,对固定点O:,质点对轴 z 的动量矩:对固定轴z,28,代数量,由右手螺旋法则确定正负。,同力矩关系式一样:动量对一点的矩在过该点的任一轴上的投影等于动量对该轴的矩,即:,2质点系的动量矩,质系对点O动量矩
13、:,质点系中各质点对固定点动量矩的矢量和称为质点系对该点的动量矩:,质系对轴z 动量矩:,质点系中各质点对固定轴动量矩的代数和称为质点系对该轴的动量矩:,29,并且有:,注意:(a)计算质点系对某点(或轴)的动量矩,并不意味着质点系就绕该点(或轴)转动。,(b)是否有,否!,(c)如果刚体作平动,则可视为一质点,其动量矩与质点动量矩相同。,30,式中 称为刚体对z轴的转动惯量,恒为正。,即:定轴转动刚体对转轴的动量矩等于刚体对该轴的转动惯量与角速度的乘积。,3定轴转动刚体对转轴的动量矩,对于任一点Mi,由于 z轴,且vi=ri,,则整个刚体对z轴的动量矩:,31,(一)转动惯量的概念,二转动惯
14、量,1.定义:刚体内各质点的质量与各质点到某轴距离平方的乘积的总和,称为刚体对该轴的转动惯量。,转动惯量与刚体的质量和质量分布情况以及点(或轴)的位置有关;恒为正标量;单位:kgm2,2.物理意义:刚体转动时惯性的度量。,对于质量是连续分布的刚体,则,32,3.回转半径,由 所定义的长度z 称为刚体对 z 轴的回转半径或惯性半径。,若已知z,则刚体的转动惯量为:,注意:z 不是刚体某一部分的具体尺寸,而是这样一个当量长度:假象地将刚体的质量集中在一个点上,如果这个点对某轴的转动惯量等于这个刚体对该轴的转动惯量,则这个点到该轴的距离就是这个刚体对该轴的回转半径。,z为长度量纲。,33,类似:质点
15、系各质点的质量与各质点到某点距离平方的乘积的总和,称为刚体对该点的转动惯量。,(二)计算转动惯量的一般公式,取直角坐标系Oxyz,设刚体上任一点Mi:mi,(xi,yi,zi),则由定义:,34,即:刚体对点的转动惯量等于刚体对通过该点的三个垂直轴的转动惯量之和的一半。,对于平面薄板:zi=0,,即:平面薄板对点的转动惯量等于板对通过该点并在薄板内的相互垂直的两个轴的转动惯量之和。,35,1.对简单形状的均质刚体,用积分法,(三)转动惯量的计算,2.对于可分为几个简单形状的均质刚体,先求出各部分对指定轴(或点)的转动惯量再求总和组合法。,3.对于形状复杂或非均质刚体,可用实验方法求转动惯量:扭
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章动 力学 普遍 定理 课件
链接地址:https://www.31ppt.com/p-3586144.html