最全高等数学公式.docx
《最全高等数学公式.docx》由会员分享,可在线阅读,更多相关《最全高等数学公式.docx(34页珍藏版)》请在三一办公上搜索。
1、最全高等数学公式高等数学公式 一些初等函数: 两个重要极限: ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=2shxex-e-x双曲正切:thx=chxex+e-xarshx=ln(x+x2+1)archx=ln(x+x2-1)11+xarthx=ln21-xlimsinx=1x0x1lim(1+)x=e=2.718281828459045.xx导数公式: (tgx)=sec2x(ctgx)=-csc2x(secx)=secxtgx-cscxctgx(cscx)tgxdx=-lncosx+Cxx(arcsinx)=1(a)=alnax+Cctgxdx=lnsin1(logx)=
2、x+tgx+Clnasecxdx=lnxseccscxdx=lncscx-ctgx+Ca1-x21(arccosx)=-1-x2dx21=sec(arctgx)=cos2x1+x2xdx=tgx+Cdx21=csc=-ctgx+C(arcctgx)=-sin2x1+xxdx2secxtgxdx=secx+Cdx1x=arctg+Ca2+x2aadx1x-a=lnx2-a22ax+a+Cdx1a+x=a2-x22alna-x+Cdxx=arcsin+Ca2-x2ap2ncscxctgxdx=-cscx+Caxadx=lna+Cxshxdx=chx+Cchxdx=shx+Cdxx2a2=ln(x+
3、x2a2)+Cp2In=sinxdx=cosnxdx=00n-1In-2nx2a22x+adx=x+a+ln(x+x2+a2)+C22x2a2222x-adx=x-a-lnx+x2-a2+C22x2a2x222a-xdx=a-x+arcsin+C22a22基本积分表: 三角函数的有理式积分: 2u1-u2x2dusinx=,cosx=,u=tg,dx= 21+u21+u21+u2三角函数公式: 诱导公式: 函数 角A - 90- 90+ 180- 180+ 270- 270+ 360- 360+ sin cos tg -tg ctg ctg -ctg tg -ctg ctg tg -ctg c
4、tg -sin cos cos cos sin sin -sin -ctg -tg -cos -tg -sin -cos tg -cos -sin ctg -cos sin -sin cos sin cos -tg tg -ctg -tg 和差角公式: 和差化积公式: sin(ab)=sinacosbcosasinbcos(ab)=cosacosbmsinasinbtg(ab)=tgatgb1mtgatgbctgactgbm1ctg(ab)=ctgbctgasina+sinb=2sina+b22a+ba-bsina-sinb=2cossin22a+ba-bcosa+cosb=2coscos22
5、a+ba-bcosa-cosb=2sinsin22cosa-b倍角公式: sin2a=2sinacosacos2a=2cos2a-1=1-2sin2a=cos2a-sin2actg2a-1ctg2a=2ctga2tgatg2a=1-tg2a半角公式: sin3a=3sina-4sin3acos3a=4cos3a-3cosa3tga-tg3atg3a=1-3tg2asintga2=1-cosaa1+cosacos=2221-cosa1-cosasinaa1+cosa1+cosasina=ctg=1+cosasina1+cosa21-cosasina1-cosaabc=2R 余弦定理:c2=a2+
6、b2-2abcosC sinAsinBsinCa2正弦定理: 反三角函数性质:arcsinx=p2-arccosxarctgx=p2-arcctgx 高阶导数公式莱布尼兹公式: (uv)(n)k(n-k)(k)=Cnuvk=0n=u(n)v+nu(n-1)v+n(n-1)(n-2)n(n-1)L(n-k+1)(n-k)(k)uv+L+uv+L+uv(n)2!k!中值定理与导数应用: 拉格朗日中值定理:f(b)-f(a)=f(x)(b-a)f(b)-f(a)f(x)柯西中值定理:=F(b)-F(a)F(x)曲率: 当F(x)=x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds=1+y2dx
7、,其中y=tga平均曲率:K=Da.Da:从M点到M点,切线斜率的倾角变化量;Ds:MM弧长。DsyDadaM点的曲率:K=lim=. 23Ds0Dsds(1+y)直线:K=0;1半径为a的圆:K=.a定积分的近似计算: b矩形法:f(x)abb-a(y0+y1+L+yn-1)nb-a1(y0+yn)+y1+L+yn-1n2b-a(y0+yn)+2(y2+y4+L+yn-2)+4(y1+y3+L+yn-1)3n梯形法:f(x)ab抛物线法:f(x)a定积分应用相关公式: 功:W=Fs水压力:F=pAmm引力:F=k122,k为引力系数 rb1函数的平均值:y=f(x)dxb-aa12均方根:f
8、(t)dtb-aa空间解析几何和向量代数: b空间2点的距离:d=M1M2=(x2-x1)2+(y2-y1)2+(z2-z1)2向量在轴上的投影:PrjuAB=ABcosj,j是AB与u轴的夹角。vvvvPrju(a1+a2)=Prja1+Prja2vvvvab=abcosq=axbx+ayby+azbz,是一个数量,两向量之间的夹角:cosq=ivvvc=ab=axbxjaybyaxbx+ayby+azbzax+ay+azbx+by+bz222222kvvvvvvaz,c=absinq.例:线速度:v=wr.bzaybycyazvvvbz=abccosa,a为锐角时, czaxvvvvvv向
9、量的混合积:abc=(ab)c=bxcx代表平行六面体的体积。平面的方程:v1、点法式:A(x-x0)+B(y-y0)+C(z-z0)=0,其中n=A,B,C,M0(x0,y0,z0)2、一般方程:Ax+By+Cz+D=0xyz3、截距世方程:+=1abc平面外任意一点到该平面的距离:d=Ax0+By0+Cz0+DA2+B2+C2x=x0+mtx-x0y-y0z-z0v空间直线的方程:=t,其中s=m,n,p;参数方程:y=y0+ntmnpz=z+pt0二次曲面:x2y2z21、椭球面:2+2+2=1abcx2y22、抛物面:+=z2p2q3、双曲面:x2y2z2单叶双曲面:2+2-2=1ab
10、cx2y2z2双叶双曲面:2-2+2=1abc多元函数微分法及应用 全微分:dz=zzuuudx+dydu=dx+dy+dzxyxyz全微分的近似计算:Dzdz=fx(x,y)Dx+fy(x,y)Dy多元复合函数的求导法:dzzuzvz=fu(t),v(t)=+dtutvtzzuzvz=fu(x,y),v(x,y)=+xuxvx当u=u(x,y),v=v(x,y)时,du=uuvvdx+dydv=dx+dyxyxy隐函数的求导公式:FxFFdydyd2y隐函数F(x,y)=0,=-,2=(-x)(-x)dxFyxFyyFydxdxFyFzz隐函数F(x,y,z)=0,=-x,=-xFzyFzF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 公式

链接地址:https://www.31ppt.com/p-3578614.html