数学推导公式.docx
《数学推导公式.docx》由会员分享,可在线阅读,更多相关《数学推导公式.docx(49页珍藏版)》请在三一办公上搜索。
1、数学推导公式和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b)/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b)/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2c
2、osa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b)/2 cosa*sinb=(sin(a+b)-sin(a-b)/2 cosa*cosb=(cos(a+b)+cos(a-b)/2 sina*sinb=-(cos(a+b)-cos(a-b)/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设
3、为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin(x+y)/2)*cos(x-y)/2) sinx-siny=2cos(x+y)/2)*sin(x-y)/2) cosx+cosy=2cos(x+y)/2)*cos(x-y)/2) cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2) 三倍角公式推导过程 tan3=sin3/cos3 =(sin2cos+cos2sin)/(cos2cos-sin2sin) =(2sincos2()+cos2()sin-sin3()/(cos3()-cossin
4、2()-2sin2()cos) 上下同除以cos3(),得: tan3=(3tan-tan3()/(1-3tan2() sin3=sin(2+)=sin2cos+cos2sin =2sincos2()+(1-2sin2()sin =2sin-2sin3()+sin-2sin3() =3sin-4sin3() cos3=cos(2+)=cos2cos-sin2sin =(2cos2()-1)cos-2cossin2() =2cos3()-cos+(2cos-2cos3() =4cos3()-3cos 即 sin3=3sin-4sin3() cos3=4cos3()-3cos 万能公式推导过程 s
5、in2=2sincos=2sincos/(cos2()+sin2().*, (因为cos2()+sin2()=1) 再把*分式上下同除cos2(),可得sin2=2tan/(1+tan2() 然后用/2代替即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 一次函数常用公式 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:(x1-x2)2+(y1-y2)2 (注:根号下(x1-x2)与(y1-y2)的平方和) 一次函数的表达式的确定方法 已知点A(x1,
6、y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b 和 y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 一次函数的图像及性质 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),
7、都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线只通过一、三象限;当k0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2 +k的图象; 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=
8、a(x-h)2+k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,开口向上,当a0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根.这两点间的距离AB=|x-x| 当=0.图象与x轴只有一个交点; 当0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0(a0时,抛物线向上开口;当a0),对称轴在y轴左; 当a与b
9、异号时(即ab0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 = b2-4ac0时,直线必通过一、三象限,y随x的增大而增大; 当k0,b0, 这时此函数的图象经过一,二,三象限。 当 k0,b0, 这时此函数的图象经过一,三,四象限。 当 k0, 这时此函数的图象经过一,二,四象限。 当 k0,b0时,直线必通过一、二象限; 当b0时,直线只通过一、三象限;当k0时,y=a(x-h)2;的图象可由抛物线y=ax2;向右平行移动h个单位得到, 当h0,k0时,将抛物线y=ax2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
10、 当h0,k0时,将抛物线y=ax2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2-k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²+k的图象; 当h0,k0时,开口向上,当a0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2A | 当=0图象与x轴只有一个交点; 当0时,图象落
11、在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0(a0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值 6用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a0) (2)当题给条件为已知图象的顶点坐标或对称轴或极大值时,可设解析式为顶点式:y=a(x-h)2+k(a0) (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 推导 公式
链接地址:https://www.31ppt.com/p-3559492.html