数学必修2全套教案9页.docx
《数学必修2全套教案9页.docx》由会员分享,可在线阅读,更多相关《数学必修2全套教案9页.docx(140页珍藏版)》请在三一办公上搜索。
1、数学必修2全套教案9页北师大版高中数学必修2第一章立体几何初步全部教案 法门高中 姚连省 1.1简单几何体 第一课时 1.1.1简单旋转体 一、教学目标:1知识与技能:通过实物操作,增强学生的直观感知。能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、圆锥、圆台、球的结构特征。会表示有关于几何体以及柱、锥、台的分类。2过程与方法:让学生通过直观感受空间物体,从实物中概括出圆柱、圆锥、圆台、球的结构特征。让学生观察、讨论、归纳、概括所学的知识。 3情感态度与价值观:使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。培养学生的空间想象能力和抽象括能力。 二
2、、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台、球的结构特征。 难点:圆柱、圆锥、圆台、球的结构特征的概括。 三、教学方法 学法:观察、思考、交流、讨论、概括。教法:探析讨论法。 四、教学过程: (一)、新课导入:1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. (二)、研探新知: 、空间几何体的类型 问题提出: 1.在
3、平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征? 2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别? 探究:空间几何体的类型 思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例? 1 思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗? 思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型? 思考4:图有何共同特点?这些几何体可以统一叫
4、什么名称?多面体 思考5:图有何共同特点?这些几何体可以统一叫什么名称?旋转体 思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称? 定点 面 棱 由若干个平面多边形围成的几何体叫做多面体 . 思考7:一般地,怎样定义旋转体? 轴 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体 。 、探究简单旋转体的结构特征 1. 探究圆柱、圆锥的结构特征: 讨论:圆柱、圆锥如何形成? 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱; 2 以直角三角形的一条直角边为旋转轴,其余两边旋
5、转所成的曲面所围成的几何体叫圆锥. 列举生活中的棱柱实例 结合图形认识:底面、轴、侧面、母线、高. 表示方法 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体. 2、探究圆台的结构特征: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. 列举生活中的实例结合图形认识:上下底面、侧面、侧棱、顶点、高. 讨论: 圆台的表示?圆台可如何旋转而得? 讨论:圆台分别具有一些什么几何性质?圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等. 3探究球体的结构特征: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
6、,叫球体. 列举生活中的实例结合图形认识:球心、半径、直径. 球的表示. 讨论:球有一些什么几何性质? 讨论:球与圆柱、圆锥、圆台有何关系? 、课堂小结:几何图形;相关概念;相关性质;生活实例; 、巩固练习:1. 练习:教材P7 1、2题. 2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,面积为12cm,求圆锥的底面半径. 3.已知圆柱的底面半径为3cm,轴截面面积为24cm,求圆柱的母线长. 4.判断下列说法是否正确: 、圆柱、圆锥、圆台的底面都是圆面。正确。、圆台的上下底面圆周上任两点的连线即圆台的母线。错误。、球和圆柱的截面一定是圆面。错误。、以直角三角形的一边为轴,其余两边旋转所得曲
7、面围成的几何体是圆锥。错误。 、作业:课本:习题1-1 A组3、4 . B组1 思考题:如图、中绕虚线旋转一周后形成的几何体是由哪些简单旋转体构成的? B A C F B A C D E D F E G 五、教后反思: 3 第二课时 1.1.2简单多面体 一、教学目标:1知识与技能:通过实物操作,增强学生的直观感知。能根据几何结构特征对空间物体进行分类。会用语言概述棱柱、棱锥、棱台、简单组合体的结构特征。会表示有关于几何体以及柱、锥、台的分类。2过程与方法:让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台、简单组合体的结构特征。让学生观察、讨论、归纳、概括所学的知识。3情感态度与价值
8、观:使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台、简单组合体的结构特征。 难点:棱柱、棱锥、棱台、简单组合体的结构特征的概括。 三、教学方法 学法:观察、思考、交流、讨论、概括。教法:探析讨论法。 四、教学过程: (一)、新课导入:复习:1、简单几何体都有哪些类型?2、概括出圆柱、圆锥、圆台、球的结构特征。 探究简单多面体的结构特征 1. 探究棱柱、棱锥的结构特征: 提问:举例生活中有哪些实例给我们以两个面平行的形象? 讨论:给一个长方体
9、模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? 知识探究:棱柱的结构特征 思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有那些特征吗?据此你能给棱柱下一个定义吗? 思考2:为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的4 侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗? 侧棱 侧面 底面 顶点 思考3:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示? C C1 B B1 A A1 D 定义:有两个面互相
10、平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. 列举生活中的棱柱实例. 结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. 思考4:棱柱上、下两个底面的形状大小如何?各侧面的形状如何? 答案:两底面是全等的多边形,各侧面都是平行四边形 思考5:有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗? A D1 AC B1 C B 5 思考6:一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点? 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-ABCDE 知
11、识探究: 棱锥的结构特征 思考1:我们把下面的多面体取名为棱锥,你能说一说棱锥的结构有那些特征吗?据此你能给棱锥下一个定义吗? 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥. 思考2:参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义? 结合图形认识:底面、侧面、侧棱、顶点、高. 讨论:棱锥如何分类及表示? 顶点 侧面 侧棱 思考4:一个棱锥至少有几个面?一个N棱锥有分别有多少个底面和侧面?有多少条侧棱?有多少个顶点? 思考5:用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何? 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同
12、的性质? 6 底面 棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方. 2、探究棱台的结构特征: 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征? 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台; 列举生活中的实例 结合图形认识:上下底面、侧面、侧棱、顶点、高. 讨论:棱台的分类及表示? 讨论:棱台具有一些什么几何性质? 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;
13、侧面是梯形;侧棱的延长线相交于一点. 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? 讨论:棱台与棱柱、棱锥有什么共性? 4. 练习:圆锥底面半径为cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. 5. 小结:学习了柱、锥、台、球的定义、表示;性质;分类. 、巩固练习:课本P8 A组 14题. 、小结:本课学习了柱、锥、台、球的定义、表示;性质;分类. 要求大家理解和掌握能根据几何结构特征对空间物体进行分类。会用语言概述棱柱、棱锥、棱台、简单组合体的结构特征。会表示有关于几何体以及柱、锥、台的分类。 、作业:1. 已知长
14、方体的长、宽、高之比为4312,对角线长为26cm, 则长、宽、高分别为多少? 2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高 3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高. 4.正四棱锥的底面积为46cm2,侧面等腰三角形面积为6cm2,求正四棱锥侧棱. 五、教后反思: 7 第三课时1.2.1 空间几何体的三视图 一、教学目标:1知识与技能:掌握画三视图的基本技能;丰富学生的空间想象力。2过程与方法:主要通过学生自己的亲身实践,动手作图,体会三视图的作用。3情感态度与价值观:提高学生空间想象力;体会三视图的作用。 二、教学重点、难点 重点:画出简
15、单组合体的三视图。难点:识别三视图所表示的空间几何体 三、学法与教法 1学法:观察、动手实践、讨论、类比;2教法:观察讨论类比法。 四、教学基本流程 创设情景,揭开课题 “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图。 给出三视图的定义:1、从几何体的前面向后面正投影,得到的投影图称为几何体的正视图。2、从几何体的左面向右面正投影,得到的投影图称为几何体的侧视图。3、从几何体的上面向下面正投影,得到的投影图称为几何体的俯视图。
16、通过多媒体课件展示长方体的三视图,并给出三视图之间的投影规律。 虽然在画三视图时取消了投影轴和投影间的连线,但三视图间的投影规律和相对位置关系仍应保持。三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方。按照这种位置配置视图时,国家标准规定一律不标注视图的名称。对应上图还可以看出:主视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。由此可得出三视图之间的投影规律为:主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等。 基本几何体的三视图 1、
17、球的三视图 8 2、圆柱的三视图 3、圆锥的三视图 作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。 简单组合体的三视图:桌面上摆放几个简单组合体,请学生画出它们的三视图 画组合体的三视图的步骤:应认清组合体的结构,把组合体分解成几个简单的基本几何体,再按简单几何体画三视图。 归纳整理:请学生回顾发表如何作好空间几何体的三视图:三视图之间的投影规律:正视图与俯视图-长对正;正视图与侧视图-高平齐;俯视图与侧视图-宽相等。画几何体的三视图时,能看得见的轮廓线或棱用实线表示,不能看得见的轮廓线或棱用虚线表示。 课后作业:课本P22 习题1.2 A组 1、2 五、教后反思: 9 俯第
18、四课时1.2.2简单组合体的三视图 一、教学目标:能利用正投影绘制简单组合体的三视图,并根据所给的三视图说出该几何体由哪些简单几何体构成。 二、教学重点:简单组合体三视图的画法。教学难点:识别三视图所表示的空间几何体. 三、学法与教法:1学法:观察、动手实践、讨论、类比;2教法:观察讨论类比法。 四、教学过程: 、复习回顾:1中心投影与平行投影的概念:中心投影:光由一点向外散射形成的投影。 平行投影:在一束平行光线照射下形成的投影。 2三视图的概念:主视图:光线从几何体的前面向后面正投影得到的投影图;左视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到
19、的投影图。几何体的正视图、侧视图和俯视图统称为几何体的三视图。 在三视图中要注意:要遵守“长对正”,“高平齐”,“宽相等”的规律;要注意三视图的主视图反映上下、左右关系,俯视图反映前后、左右关系,左视图反映前后、上下关系,方位不能错。 、探究新课 1简单组合体的三视图: 例1:画出下列几何体的三视图。 分析:画三视图之前,先把几何体的结构弄清楚。 例2:如图:设所给的方向为物体的正前方,试画出它的三视图。 10 主视图左视图俯视图正前方现在,我们已经学会了画物体的三视图,反过来,由三视图,你能说出是什么物体吗? 2、三视图与几何体之间的相互转化。 投影出示图片 请同学们思考图中的三视图表示的几
20、何体是什么? 圆台 请同学们思考图中的三视图表示的几何体是什么? 四棱柱 三视图对于认识空间几何体有何作用?你有何体会? 教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。 思考:若只给出一组正,侧视图, 那么它还可能是什么几何体? 正四棱台 11 三棱台 例3:根据下列三视图,说出立体图形的形状。 (1)(2)(3)解:圆台;正四棱锥;螺帽。 例4:下图是一个物体的三视图,试说出物体的形状。 主视图左视图俯视图 、巩固练习: 课本第15页练习 第14题。 、归纳小结:今天我们学习了三视图的画法以及由三视图说实物。重点要通过三视图识别所表示的几何体。 、作业布置: 课本
21、第20-21页 习题12的第1、2题。 五、教后反思: 12 第五课时1.2.3 空间几何体的直观图 一、教学目标 1知识与技能:掌握斜二测画法画水平设置的平面图形的直观图。采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 2过程与方法:学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。 3情感态度与价值观:提高空间想象力与直观感受。体会对比在学习中的作用。感受几何作图在生产活动中的应用。 二、教学重点、难点 重点、难点:用斜二测画法画空间几何值的直观图。 三、学法与教法 1学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
22、2教法:讨论探究法 四、教学过程: (一)、新课导入: 1. 提问:何为三视图? 2. 讨论:如何在平面上画出空间图形? 3. 引入:定义直观图. 观察者站在某一点观察几何体,画出的图形. 把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形 、探究新课 1. 水平放置的平面图形的斜二测画法: 讨论:水平放置的平面图形的直观感觉?以六边形为例讨论. 例1 用斜二测画法画水平放置的正六边形的直观图。 画法: 如图1.2-10(1),在正六边形ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O。在图1.2-10(2)中,画相应的x轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 全套 教案
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3559489.html