数学建模华中赛B题优秀论文.docx
《数学建模华中赛B题优秀论文.docx》由会员分享,可在线阅读,更多相关《数学建模华中赛B题优秀论文.docx(19页珍藏版)》请在三一办公上搜索。
1、数学建模华中赛B题优秀论文第八届华中地区大学生数学建模邀请赛 承 诺 书 我们仔细阅读了第八届华中地区大学生数学建模邀请赛的竞赛细则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们的参赛报名号为: 参赛队员 (签名) : 队员1: 队员2: 队员3: 武汉工业与应用数学学会 第八届华中地区大学生
2、数学建模邀请赛组委会 第八届华中地区大学生数学建模邀请赛 编 号 专 用 页 选择的题号: B 参赛的编号: 竞赛评阅编号: 第八届华中地区大学生数学建模邀请赛 题目: 基因调控网络的重构及病毒感染的致病机制 一个基因的表达受其他基因的影响,而这个基因又影响其他基因的表达,这种相互影响相互制约的关系构成了复杂的基因调控网络。基因调控网络的研究是从基因之间相互作用的角度揭示复杂的生命现象,是当前生物信息学研究的前沿。 疾病的发病因素和原理,对于医疗领域有着十分重要的作用。这不仅仅能够让更多的患者免受病痛的困扰,还能促进人类医学史的进步。所以根据基因数据谱来重构基因调控网络,以及某个疾病症状产生的
3、原因的研究具有很大的意义。 本文对基因调控网络的重构以及导致严重临床症状的蛋白质进行了研究和推测。 由于所给的基因数据谱十分庞大,所以首先要对数据进行降维处理。本题基于时间序列给出了272组基因数据,为了减小噪声以及缺失值对实验精度的干扰,在实验前对四组噪声较大或有缺失的数据进行剔除。具体的降维方式采用了多元统计法中的主成分分析和聚类分析:先对这一万多个数据做主成分分析,从这一万多个数据中,通过线性变化选出了1000个左右的重要变量来组成新的样本。既降低了数据的处理难度,又尽量保持了新数据和原数据相比,尽可能保持原数据的信息。然后用spss两阶聚类法粗略地对要聚类的数目进行一个估计,根据此估计
4、用K-means算法对数据进行处理,得到相应的30组数据。 对这30组数据建立模型,来重构基因调控网络。本文中采用的模型是线性回归模型,并对它的合理性,以及相较贝叶斯网络作了对比。最后依据所得到的系数矩阵进行基因网络图的绘制与呈现。 问题二在第一问的基础上,寻求导致产生严重临床症状的蛋白质。根据附录二给出的个体出现感染症状时间节点示意图,1代表此志愿者在该时间节点表现出了临床症状,0则表示没有,这是一个二分类。本题采用逻辑回归模型,利用LR分类器模型去寻找该重要蛋白质。用268组数据,其中每一个基因视为该组数据的一个属性,对这些基因进行LR分类,并得到相应的系数矩阵。然后对系数矩阵进行分析,取
5、出影响比较大的几个基因,然后对照基因表对基因作用的描述去寻求该重要蛋白。本题最终找出四个导致志愿者产生严重的临床症状的蛋白质。 所有代码实现,以及每次得到的系数矩阵均在附录中给出。 关键词:线性回归模型,基因调控网络重构,多元统计法,主成分分析,聚类分析,逻辑回归 1 1.问题重述 通过基因之间的相互调控,生物体可以实现细胞的生长,器官的发育、以及免疫等各种生物机能。随着测序技术的发展,产生了越来越多的高通量实验数据。 基于这些实验数据重建基因调控网络,对于深入了解生物机能的实现过程具有重要作用。 生物实验中,在17 个健康志愿者鼻内接种流感病毒H3N2/Wisconsin,其中9 个人出现了
6、严重的感染症状,另外的8个人没有出现症状。接种后,每隔大约8 h从血液中采集样本测量基因表达谱数据,实验数据一共有16 个时间点( 单位: h) ,包括baseline ( -24) ,0,5,12,21,29,36,45,53,60,69,77,84,93,101,108,共268 个样本。基因表达谱数据见附件1,其中前8个为未出现严重感染症状的数据,后9个为出现严重感染症状的数据。个体出现感染症状的时间节点示意图见附件2。 问题: 1)根据实验数据重构基因调控网络; 2)通过比较出现感染症状的志愿者和健康志愿者的样本数据,试确定病毒感染人体后导致志愿者是否会出现严重临床症状的重要蛋白。 2
7、.问题分析 一个基因的表达受其他基因的影响,而这个基因又影响其他基因的表达,这种相互影响相互制约的关系构成了复杂的基因调控网络。更一般些,几乎所有的细胞活动都被基因网络所控制。生命是存储并加工信息的复杂系统,孤立地研究单个基因及其表达往往不能确切地反映生命现象本身的内在规律。因此,需要从复杂系统的角度研究基因网络。 对于问题一,考察我们如何根据已有的基因表达谱去重构基因调控网络,从而推断调控网络各节点之间潜在的调控关系。考虑“反向分析法”来重构基因调控网络,常见的基因调控网络模型有布尔网络模型、线性组合模型和贝叶斯网络模型等等。然而题目所给的数据集十分庞大,如果直接将这一万个基因全部带入模型,
8、那么计算量是惊人的。所以需要用到多元统计方法中的主成分分析和聚类分析去实现降维的操作。 对于问题二,在已经重构好的基因网络的基础上寻找导致病毒感染人体以后导致志援者是否产生严重临床症状的蛋白质。首先我们要对数据进行分析,寻找与染病相关系数大的基因,然后依据附录一的sheet2中对于基因的描述去进一步确定关键蛋白质。 2 3.模型假设 针对本问题,建立如下合理假设: 题目所给数据准确可靠; 假设不考虑个体差异性; 基因表达呈高斯分布 ; 4.符号说明 Xn,m表示第n个基因基于时间序列的第m组数据; AK表示一个基因; bi为回归系数; at,X代表基因X在时间点t具有的表达值; b1,b2,b
9、3为常数; e1,e2为误差项。 5.问题一的建模与算法实现求解 5.1数据的分析 问题一需要根据所给的基因表达谱数据来重构基因调控网络,附录一中的sheet1中给出了17个志愿者体内的10000种基因,随着注入病毒后的时间变化而出现的数值变化。由于数据集过大,所以第一步要做的就是对这一万种基因进行筛选降维操作。只选取部分具有代表性的数据代入模型,从而减少计算量。对于数据的处理部分,采用多元统计中的常用方法,主成分分析和聚类分析。 5.2数据预处理 5.2.1数据处理方法选择 由于这道题目的数据量庞大,所以,如何筛选数据就成了很重要的一步。我们这里采取先对10000组数据做主成分分析,形成10
10、00组新变量,再对这些新变量进行聚类分析,进一步降维。 5.2.2主成分分析 主成分分析的基本思想: 主成分分析的基本思想是通过构造10000个基因初始数据的适当的线性组合,以产生一系列互不相关的新变量,从中选出少数几个新变量并使它们尽可能多地包含原先所有基因的信息,从而使得用这几个新变量替代原变量分3 析问题成为可能。即在尽可能少丢失信息的前提下从所研究的m个变量中求出几个新变量,它们能综合原有变量的信息,相互之间又尽可能不含重复信息。 主成分分析的实现: 设有n个样品,m个变量的数据矩阵。本题中n=10000,表示10000种基因;m=268,表示基于时间序列的基因数据变化指标。 x1mx
11、(1)x11x12xxxx21222m=(2) Xnm=xxnm(n)xn1xn2寻找k个新变量y1,y2,1、yl=al1x1+al2x2+2、y1,y2,yk(km),使得 +almxm,(l=1,2,k) yk彼此不相关 ,alm)的分量alj刻划出第j个变量关于第l个主主成分的系数向量al=(al1,al2,成分的重要性。 可以证明,若x=(x1,x2,特征值为l1l2,xm)T为m维随机向量,它的协方差矩阵V的m个,um,则lm0,相应的标准正交化的特征向量为u1,u2,x=(x1,x2,m,xm)T的第i主成分为yi=uiTx(i=1,2,T,m)。 km称li/lj为主成分yi=
12、uix(i=1,2,j=1,m)的贡献率,lj/lj为主成分j=1j=1y1,y2,yk的累计贡献率,它表达了前k个主成分中包含原变量x1,x2,xm的信息量大小,通常取k使累计贡献率在85%以上即可。当然这不是一个绝对不变的标准,可以根据实际效果作取舍,例如当后面几个主成分的贡献率较接近时,只选取其中一个就不公平了,若都选入又达不到简化变量的目的,那时常常将它们一同割舍。 计算步骤如下: =x=(x1,x2,1、由已知的原始数据矩阵Xnm计算样本均值向量m1n 其中xi=xij(i=1,2,nj=1,m) ,xm)T; =1(s)=2、计算样本协方差矩阵Vij(sij) n-1其中sij=(
13、xli-xi)(xlj-xj)(i,j=1,2,l=1n,m) 4 3、把原始数据标准化,即xij=XTX; R的特征根ll4、求R12xij-xjsjj,记Xnm=(xij)。形成样本相关矩阵lm0及相应的标准正交化的特征向量u1,u2,um,可得主成分为yi=uiTx(i=1,2,m)。 主成分分析降维结果 用Matlab实现以上算法,实现结果如下: 图5.1 主成分分析结果 如图可见是一个1000组新的变量,由于数据集比较大,在这里只截出一部分。 下面再对这1000组新变量做聚类分析处理。 5.2.3聚类分析 聚类分析的基本思想: 聚类,简单的讲就是将一个给定的数据集分成若干个不同簇的过
14、程。聚类算法中的簇指的是数据对象的集合,且这种数据对象集合必须满足条件:同一簇中的数据对象间具有较大的相似性,而不同簇中的数据对象间具有较小的相似性。聚类的主要指导思想就是尽可能使同一簇内对象相似度达到最大,且不同簇间对象相异度达到最大。 K-means算法: 5 首先从含有n个数据对象的数据集中随机选择K个数据对象作为初始中心然后计算每个数据对象到各中心的距离,根据最近邻原则,所有数据对象将会被划分到离它最近的那个中心所代表的簇中,接着分别计算新生成的各簇中数据对象的均值作为各簇新的中心,比较新的中心和上一次得到的中心,如果新的中心没有发生变化,则算法收敛,输出结果,如果新的中心和上一次的中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 华中 优秀论文
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-3559486.html