数学建模 飞机管理优化模型.docx
《数学建模 飞机管理优化模型.docx》由会员分享,可在线阅读,更多相关《数学建模 飞机管理优化模型.docx(20页珍藏版)》请在三一办公上搜索。
1、数学建模 飞机管理优化模型飞行管理优化模型 摘 要 本文建立了关于飞行管理问题的简洁数学模型。首先我们对新进入的飞机作出判断,通过模型给出了计算机模拟求解,看其是否会与其他六架飞机相碰,若会,则再次通过建型求出使各飞机安全通过区域应调整的方向角,对模型给出了非线性优化的具体算法。在模型改进中,我们对风速、人的反应时间及飞机的实际速度等对方向角的调整的影响做了简单的分析与评价,使得模型更易在实际应用中推广。 模型:针对问题一,建立了碰撞检测模型。首先,对已给数据进行分析,并利用VC编程,模拟在6驾飞机都不改变飞行方向的条件下的飞行情况,结果是会相撞的。 模型:针对问题二,建立了多元非线性动态优化
2、模型。在确保互不相撞的前提下,要使得飞机调整的角度尽可能小,满足Min f=i=16bi2,及最优解。运用MATLAB软件编程给出了具体算法。第i架飞机需调整角度分别为:0.0000 0.0000 2.0683 -0.4896 -0.0055 1.5611 关键词:飞机碰撞 方向角调整 非线性优化 模拟仿真 一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如
3、何调整各架飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。 1 请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算,要求飞机飞行方向角调整的幅度尽量小。 设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。 记录数据为: 飞机编号 1 2 3 4 5 新进
4、入 横坐标x 150 85 150 145 130 0 纵坐标y 40 85 155 50 150 0 方向角 243 236 220.5 159 230 52 注:方向角指飞行方向与x轴方向的夹角。 试根据实际应用背景对你的模型进行评价与推广。 问题要求 判断飞机是否会碰撞; 若会碰撞,请给出方向角最优调整方案。 二、模型假设 1、不碰撞的标准为任意两架飞机的距离大于8公里; 2、飞机飞行方向角调整的幅度不超过30度; 3、所有飞机在同一平面飞行,且速度均为每小时800公里; 4、当飞机刚进入区域时就开始调整方向角,全过程只调整一次,且调整时间忽略不计; 5、飞机在区域内飞行时不考虑其他一切
5、外界因素的影响; 6、相对正方形区域而言,将飞机作为质点考虑; 7、最多需考虑6架飞机,不必考虑飞机离开此区域后的状况。 2 三、符号说明 : 第i架飞机的坐标单位:km; :第j架飞机的坐标单位:km; v : 飞机飞行速度,其值为800 km/h; ti: 第i架飞机在区域内飞行时间 单位:h; t : 飞机在区域内飞行的任一时刻 单位:h; ai、aj : 第i、j架飞机的方向角 单位:; bi、bj : 第i、j架飞机需调整的方向角 单位:; dij: 表示第i架飞机与第j架飞机之间的距离,单位:km。 四、问题分析 发生碰撞 飞机安全通过正方形区域 调整方向角 不 碰判断是否碰撞 由
6、上图可知:模型假设飞机在同一高度飞行,所以只需讨论飞机在二维平面的碰撞及调节管理问题。以实现进入该区域的飞机都能安全通过该区域的目标。 当新飞入的飞机刚进入该正方形区域时,首先应通过模型对其作出判断,看其在区域内飞行时是否会与区域内的其他飞机发生碰撞。并在二维坐标系中标出各飞机的位置坐标,结合其方向角借助计算机进行仿真模拟。 若通过模型验证不会碰撞,则使各飞机按原路线飞行即可安全通过正方形区域;否则,就需通过模型计算得出各飞机需要调整的角度,并且使各角度的3 改变量尽可能小,即最优解。在原方向角的基础之上调整计算得出的方向角,再用模型对其进行检验,提高结果的可信度,以确保各飞机能安全通过该正方
7、形区域。 另外,为了使结果更加让人信服,在对时间的范围选取和最优解的处理问题上,我们进行了细致的分析。 时间最小:ti表示为第i架飞机在区域内飞行的时间,tj表示为第j架飞机在区域内飞行的时间,取t=min,即计算第i架飞机与第j架飞机间的距离时保证两架飞机都在区域内,且在t时间内第i架飞机不与第j架飞机相撞,即保证所讨论范围在正方形区域内。 平方和最小:由于所调角度bi,如果直接求和,正负将会抵消,所以目标函数定为:Min f=i=16bi2。 五、模型的建立与求解 模型一:碰撞检测模型 在平面直角坐标系中设出各飞机的坐标分别为(xi,yi),方向角分别为ai(i=1,2,3,4,5,6),
8、则第i架飞机t时刻的位置为: (xi+vtcosai,yi+vtsinai) 第i架飞机在区域内时满足: 0xi+vtcosai1600yi+vtsinai160 t0求得0tti,ti即为第i架飞机在区域内的飞行时间。 所以,第6架飞机在区域内飞行的时间为t6。 在t=min时间内,第6架飞机与第i架飞机都在正方形区域内, 第六架飞机与其他五架飞机的距离为 di6=xi+vtcosai-(x6+vtcosa6)2+yi+vtsinai-(y6+vtsina6)28 4 如果满足 di6即认为不会碰撞。 根据题目所给数据,标出各飞机在二维坐标中的位置。其中左上角为坐标原点,横轴水平向右为x轴正
9、方向,纵轴竖直向下为y轴正方向。1、2、3、4、5、6分别为飞机编号,红色圆圈表示两架飞机互不相撞应满足的范围,即圆的半径为4km。 图5.1 飞机6进入该区域时各飞机位置 在VC模拟环境下对其进行判断,根据程序模拟结果的截图可直观的看出新进入的编号为6的飞机会与编号为5的飞机和编号为3的飞机碰撞: 图5.2 飞机5和飞机6碰撞图 5 表5.1:飞机5和飞机6碰撞时各架飞机间距 飞机编号 1 2 3 4 5 6 1 / / / / / / 2 89.7594 / / / / / 3 48.6257 98.5514 / / / / 4 60.343 83.7181 22.9526 / / / 5
10、 44.2661 80.1122 18.4395 16.1179 / / 6 51.5642 77.686 22.4788 9.9093 7.8443 / 图5.3飞机3和飞机6碰撞图 表5.2:飞机3和飞机6碰撞时各架飞机间距 飞机编号 1 2 3 4 5 6 1 / / / / / / 2 90.1614 / / / / / 3 51.4065 99.0578 / / / / 4 68.3697 91.4379 23.0886 / / / 5 45.9234 80.2436 18.8310 23.2464 / / 6 52.1156 91.9763 7.9422 17.5740 12.39
11、61 / 根据以上判断,新进入的飞机会与区域内的飞机发生碰撞,所以需对各飞机的方向角进行调整。 6 模型二:多元非线性优化模型 经过模型的判断,如果会碰撞,则需计算如何调整各架飞机的方向角,以避免碰撞,并且使各架飞机调整的角度尽可能小,即求一个最优解。设各飞机飞行方向的调整角度为约束变量,建立模型,由于bi,如果直接求和,正负将会抵消,所以目标函数定为: Min f=i=16bi2约束条件: 按调整后的角度飞行,任意两架飞机在区域内的距离大于8公里,即 dij=xi+vtcos(ai+bi)-xj+vtcos(aj+bj)2+yi+vtsin(ai+bi)-yj+vtsin(aj+bj)2 d
12、ij64 (ij,i,j=1,2,3,4,5,6); 根据模型知,第i、j架飞机在区域内飞行的时间分别为:ti、tj; 在t=min时间内,第i架飞机与第j架飞机都在正方形区域内。 飞机飞行最大调整角度bi、bj满足:故飞机调整角度最优解模型如下: Min f=i=16-30obi30o-30bj30oobi2dijf64 s.t -30obi30o -30obj30o 这是一个非线性优化问题,借助MATLAB的fimincon函数编程计算得出最优解。 表5.3:各架飞机方向角调整情况表 飞机编号i 调整前的方向角ai 调整的方向角bi 调整后方向角ai1 243 0 243 2 236 0
13、236 3 220.5 4 159 5 230 6 52 2.0683 -0.4896 -0.0055 1.5611 222.5683 7 +bi158.5104 229.9945 53.5611 由所求结果,利用模型一对结果进行检验,用VC模拟调整角度后的飞机的动态飞行路线 ,检验结果的截图见图5.4。 图5.4 调整角度后模拟飞行路线截图 通过图5.4与图5.3比较,各飞机均可安全飞出正方形区域,完全符合安全飞行标准。 六、模型的灵敏度分析 由于飞机的内部性能和飞行员的技术水平等一系列内部因素及不断变化的外部条件都可能对结果产生影响,因此讨论这些因素对最优解的影响是十分必要的。 Dt表示新
14、飞如的飞机进入区域Dt后各飞机开始调整方向。则 d=ijxi+Dtcosa+vtcosai+bii()-xj+Dtcosa+vtcosaj+bjj()2+yi+Dtsina+vtsinai+bii()-yj+Dtsina+vtsinaj+bjj()2dijf64 s.t -30obi30o -30obj30o 由以上条件求得最优解。显然,Dt越大,模型无解的可能性越大,即各8 飞机在新飞入的飞机进入区域后越晚调整,飞机在正方形区域内发生碰撞的概率越大。 v0表示区域内平均风速,其方向角为a0。所以此时飞机飞行的水平速度为vcosai+v0cosa0,竖直速度为vsinai+v0sina0,即飞
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学建模 飞机管理优化模型 数学 建模 飞机 管理 优化 模型
链接地址:https://www.31ppt.com/p-3559379.html